2008 Mathematics

Intermediate 2 - Units 1, 2 and 3 Paper 1

Finalised Marking Instructions

© The Scottish Qualifications Authority 2008
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles

These principles describe the approach to be taken when marking Intermediate 2 Mathematics papers. For more detailed guidance please refer to the notes which are included with the Marking Instructions.

1 Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.

2 The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.

3 The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values / algebraic expressions.

4 Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).

5 Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.

6 In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.

7 Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.

8 Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.

9 Do not penalise the same error twice in the same question.
10 Do not penalise a transcription error unless the question has been simplified as a result.
11 Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1 Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how s/he has awarded marks, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through, if otherwise correct and can be awarded marks, it should be marked with a crossed tick,
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Mathematics Intermediate 2: Paper 1, Units 1, 2 and 3 (non-calc)

$\begin{aligned} & \hline \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
1	Ans: gradient is 4 - ${ }^{1}$ interpret: find gradient	- ${ }^{1} \quad 4$ 1 mark
NOTES: 1. 2.	or an answer of $m=4, c=5$ or $4 x$	award $0 / 1$ award $0 / 1$
2	Ans: $\quad 3 x^{2}-5 x-10$ - ${ }^{1}$ process: start to multiply out brackets \bullet^{2} process: complete process of multiplying out brackets -3 process: collect like terms which must include x^{2} term	- ${ }^{1}$ evidence of 2 correct terms (eg $3 x^{2}-15 x$) - $2 x^{2}-15 x+2 x-10$ -3 $3 x^{2}-5 x-10$
NOTES:		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each		Illustrations of evidence for awarding a mark at each •	
3 (a)	Ans: 12th - ${ }^{1}$ interpret: inter	pret diagram	-12th	
NOTES:				
(b)	Ans: 5/20 or equ - process: calc	ivalent alate probability	$\text { - }{ }^{1} \quad \frac{5}{20}$	
NOTES:				
1. Accept variations eg $\begin{array}{ll}5: 20 \\ & 0: 25 \\ & 25 \% \\ & 5 \text { out of } 20\end{array}$				

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
5 (a)	Ans: 1, 3, 6, 11, 16, 22, 24, 25 - ${ }^{1}$ communicate: table with cumulative frequency column	- ${ }^{1} \quad 1,3,6,11,16,22,24,25$ 1 mark
NOTES:		
(b)	Ans: $Q_{2}=4, Q_{1}=2 \cdot 5, Q_{3}=5$ - ${ }^{1}$ communicate: state median - ${ }^{2}$ communicate: state lower quartile - ${ }^{3}$ communicate: state upper quartile	- ${ }^{1} \quad Q_{2}=4$ - ${ }^{2} \mathrm{Q}_{1}=2 \cdot 5$ 3 marks
NOTES:	Where the quartiles have been obtained from Number of books leading to $\mathrm{Q}_{2}=3 \cdot 5, \mathrm{Q}_{1}=1 \cdot 5, \mathrm{Q}_{3}=5 \cdot 5$ i) Frequency (unordered) leading to $\mathrm{Q}_{2}=5, \mathrm{Q}_{1}=2 \cdot 5, \mathrm{Q}_{3}=4$ ii) Frequency (ordered) leading to $\mathrm{Q}_{2}=2 \cdot 5, \mathrm{Q}_{1}=1 \cdot 5, \mathrm{Q}_{3}=5$ v) Cumulative frequency leading to $\mathrm{Q}_{2}=13 \cdot 5, \mathrm{Q}_{1}=4 \cdot 5, \mathrm{Q}_{3}=23$	award $0 / 3$ award $0 / 3$ award $0 / 3$ award $0 / 3$
(c)	Ans: 1.25 - ${ }^{1}$ process: calculate SIQR	${ }^{-1} \quad 1.25$ 1 mark
NOTES:		

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
(d)	Ans: number of textbooks more spread out for girls - communicate: a valid statement	\bullet a valid statement $\quad 1$ mark
NOTES:		
6	Ans: 40 sq cm - ${ }^{1}$ strategy: know how to find area - ${ }^{2}$ process: calculate area correctly	- \quad area $=\frac{1}{2} \times 16 \times 20 \times \frac{1}{4}$
NOTES:		
1. For $\left(\frac{1}{2} \times 16 \times 20 \times \sin \frac{1}{4}\right)$ leading to an answer of2. For an answer of $40 \mathrm{~cm}^{2}$, without working		$40 \mathrm{~cm}^{2} \quad$ award $1 / 2$
		award1/2
	or an answer of $160 \mathrm{~cm}^{2}\left(\frac{1}{2} \times 16 \times 20\right)$	award 0/2

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each e	Illustrations of evidence for awarding a mark at each •
7	Ans: 19^{0} - process: state the size of $\angle \mathrm{ABD}$ $\bullet 2$ process: calculate the size of $\angle \mathrm{BAD}$ - ${ }^{3}$ process: calculate the size of $\angle \mathrm{BAC}$	- ${ }^{1} \quad 90^{\circ}$ - ${ }^{2} \quad 44^{\circ}$ - ${ }^{3} \quad 19^{\circ}$ 3 marks
NOTES: 1. Alternative method		
	${ }^{2}$ 2 process: calculate the size of $\angle \mathrm{BEA}$ (where E is the point of intersection of $A C$ and $B D$)	$\bullet^{2} \quad 71^{\circ}$
2. Angle $A B D$, angle $B A D$ and angle BEA may not be explicitly stated, they may be marked in a diagram and can be awarded the first and second marks.		
8	Ans: $a=5, b=3$ - communicate: state the value of a \bullet^{2} communicate: state the value of b	$\begin{array}{ll} \bullet & 5 \\ \bullet & 3 \end{array}$
		2 marks
NOTES:		
1. For $\mathrm{a}=3, \mathrm{~b}=5$ award $1 / 2$		

$\begin{array}{\|c\|} \hline \text { Question } \\ \text { No } \\ \hline \end{array}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each -
9 (a)	Ans: $a=-5, b=1$ - communicate: state value of a \bullet^{2} communicate: state value of b	-1 $\quad-5$ $\bullet^{2} \quad 1$ 2 marks
NOTES:		
(b)	Ans: $x=5$ - ${ }^{1}$ communicate: correctly state equation of axis of symmetry	$\bullet^{1} \quad x=5 \times 1$ mark
NOTES: 1.	or any answer other than $x=5$	$\text { award } 0 / 1$
(c)	Ans: $P(0,26), Q(10,26)$ - ${ }^{1}$ communicate: state x-coordinates of P and Q -2 strategy: know how to find y coordinate of P (or Q) ${ }^{3}$ process: \quad find coordinates of P and Q	- ${ }^{1} \quad(0, ?)$ and $(10, ?)$ -2 $\quad y=(0-5)^{2}+1$ - $3 \quad(0,26), Q(10,26)$
NOTES: 1. 2.	Where a candidate substitutes both 0 and 10 into an oordinates for P and Q , all 3 marks are available he third mark is available only when the y coordi to the quadratic equation	incorrect equation leading to different y tes have been obtained by substitution

Question No	Marking Scheme Give $\mathbf{1}$ mark for each •	Illustrations of evidence for awarding a mark at each \bullet	
10	Ans: $\frac{\mathbf{4}}{\mathbf{3}}$		
	\bullet^{1} strategy: know to use $\sin x / \cos x=\tan x$	$\bullet^{1} \quad \tan x=4 / 5 \div 3 / 5$	
	\bullet^{2} process: calculate tan correctly	$\bullet^{2} \frac{4}{3}$	

TOTAL MARKS FOR PAPER 1

[END OF MARKING INSTRUCTIONS]

2008 Mathematics

Intermediate 2 - Units 1, 2 and 3 Paper 2

Finalised Marking Instructions

© The Scottish Qualifications Authority 2008
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles

These principles describe the approach to be taken when marking Intermediate 2 Mathematics papers. For more detailed guidance please refer to the notes which are included with the Marking Instructions.

1 Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.

2 The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.

3 The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values / algebraic expressions.

4 Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).

5 Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.

6 In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.

7 Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.

8 Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.

9 Do not penalise the same error twice in the same question.
10 Do not penalise a transcription error unless the question has been simplified as a result.
11 Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1 Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how s/he has awarded marks, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through, if otherwise correct and can be awarded marks, it should be marked with a crossed tick, \mathcal{X}.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
1	Ans: $£ 9625.93$ - ${ }^{1}$ strategy: know how to increase by 4.5% - ${ }^{2}$ strategy: know how to calculate amount - ${ }^{3}$ strategy: know how to calculate interest - ${ }^{4}$ process: carry out all calculations correctly within a valid strategy and round to nearest penny	- $\quad \times 1.045$ - ${ }^{2} \quad 50000 \times 1.045^{4}$ - ${ }^{3} 50000 \times 1.045^{4}-50000$ - ${ }^{4} \quad 9625.93$ 4 marks
NOTES:		
1	For an answer of $£ 9625.93$, with or without working	award 4/4
2	For an answer of $£ 59625.93$, with or without worki	g \quad award 3/4
3	For an answer of $£ 2567.62$ (the fourth year's interest)), with working award 3/4
4	Where an incorrect percentage has been used, the working must be followed through to give the possibility of awarding 3/4 eg for an answer of $£ 171025.31\left(50000 \times 1.45^{4}-50000\right)$, with working	
5	For an answer of $£ 41589.48\left(50000 \times 0.955^{4}\right)$	award 2/4
6	For an answer of $£ 8410.52$ ($50000-41589.48$)	award 2/4
7	For an answer of $£ 9000(50000 \times 0.045 \times 4)$	award 0/4

$\begin{gathered} \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
2 (a)	Ans: 58600 cubic cm - ${ }^{1}$ strategy: know how to calculate volume of basket - ${ }^{2}$ process: substitute correctly into volume formulae - ${ }^{3}$ process: calculate total volume -4 process: round answer to 3 significant figures	- ${ }^{1} \quad$ volume of cuboid + volume of cylinder - ${ }^{2} 30 \times 24 \times 50+\pi \times 12^{2} \times 50$ -3 $\quad 58619 \mathrm{~cm}^{3}$ - $4 \quad 58600 \mathrm{~cm}^{3}$ 4 marks
NOTES: 1 2 3	Accept variations in volume due to variations in the The fourth mark is available for rounding an answe Where the answer requires no rounding, the fourth Common wrong answers	value of π correct to three significant figures. mark cannot be awarded.
(b)	Ans: 29.9 cm - ${ }^{1}$ strategy: know how to find expression for volume of box \bullet process: equate volume with $\frac{1}{2}$ of answer to part (a) - ${ }^{3}$ communicate: state value for h	- ${ }^{1} \quad 35 \times 28 \times h$ -2 $35 \times 28 \times h=\frac{1}{2} \times 58600$ -3 $\quad h=29.9$ 3 marks
NOTES:		

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
3 (a)	Ans: 14.8 - ${ }^{1}$ process: calculate the mean - ${ }^{2}$ process: calculate $(x-\bar{x})^{2}$ - ${ }^{3}$ process: substitute into formula - ${ }^{4}$ process: calculate standard deviation	- $\quad 27$ - ${ }^{2} \quad 289,81,1,25,484$ -3 $\sqrt{(880 / 4)}$ - ${ }^{4} \quad 14.8$ (disregard rounding)
NOTES:		
1. Alternative method		
	process: calculate $\sum x$ and $\sum x^{2}$	-135 and 4525
	process: substitute into formula	-2 $\sqrt{\frac{4525-135^{2} / 5}{5-1}}$
\bullet^{3}	process: simplify	- $3 \sqrt{\frac{880}{4}}$
	process: calculate standard deviation	- ${ }^{4} 14 \cdot 8$ (disregard rounding)
2 For	orrect answer, without working	award 0/4
(b)	Ans: The physics marks were more consistent than the maths marks (since $6.8<14.8$) - ${ }^{1}$ communicate: valid comment about the spread of marks	\bullet valid comment $\quad 1$ mark
NOTES:		

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
(c)	Ans: $y=\frac{1}{2} x+20$ - ${ }^{1}$ process: find gradient \bullet^{2} process: state y-intercept or c in $y=$ $\mathrm{m} x+\mathrm{c}$ -3 communicate: state equation of line	- $\quad \mathrm{m}=\frac{1}{2}$ (or equivalent) - ${ }^{2} \quad c=20$ - ${ }^{3} y=\frac{1}{2} x+20$
NOTES: 1 2 3 4 5 6	For correct answer without working For $p=0 \cdot 5 m+20$ For $y=0 \cdot 5 x$ Where m and/or c are incorrect the working must b the possibility of awarding $1 / 3$ or $2 / 3$ If the equation is stated incorrectly and there is no for correct gradient or correct y-intercept For an incorrect equation (ie both m and c incorrect eg $y=20 x+0 \cdot 5$	award 3/3 award $3 / 3$ award $1 / 3$ followed through to give orking, $1 / 3$ can be awarded , without working award $0 / 3$
(d)	Ans: 58\% - ${ }^{1}$ process: calculate physics \% using equation	-1 $\begin{array}{r} \\ \\ \text { 1 mark }\end{array}$
NOTES:		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each ${ }^{\circ}$	Illustrations of evidence for awarding a mark at each •
4 (a)	Ans: $280 x+70 y=5250$ - ${ }^{1}$ interpret: interpret the text	-1 $280 x+70 y=5250$ (mark
NOTES: 1	$\text { ccept } 280 x+70 y=52 \cdot 50$	
(b)	Ans: $210 x+40 y=3800$ - ${ }^{1}$ interpret: interpret the text	-1 $210 x+40 y=3800$ (mark
NOTES:		
1 Accept $210 x+40 y=38 \cdot 00$ when consistent with the answer to part (a)		

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each -
5	Ans: Angle EDF = 111.8° - ${ }^{1}$ strategy: know to apply cosine rule to find angle EDF - 2 process: correct application of cosine rule ${ }^{3}$ process: calculate angle EDF	- ${ }^{1} \quad$ evidence $\bullet^{2} \quad \cos D=\frac{10.4^{2}+13.2^{2}-19.6^{2}}{2 \times 10.4 \times 13.2}$ - ${ }^{3} \quad 111.8^{\circ}$
NOTES:		
1 Where an angle other than angle EDF has been calculated ($\angle \mathrm{E}=38 \cdot 7^{\circ}, \angle \mathrm{F}=29 \cdot 5^{\circ}$), a maximum of $2 / 3$ can be awarded provided that the value of the angle calculated is consistent with the application of the cos rule		
2	1.95 (RAD), $124 \cdot 2$ (GRAD), with working	award $3 / 3$
3	For an answer obtained by scale drawing,	award $0 / 3$

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
6	Ans: 0.35, $\mathbf{- 1 . 1 5}$ - ${ }^{1}$ strategy: know to use quadratic formula - ${ }^{2}$ process: correct substitution in formula -3 process: calculate $b^{2}-4 a c$ correctly - ${ }^{4}$ process: state both values of x correct to two decimal places	- ${ }^{1} \quad$ evidence -2 $\frac{-4 \pm \sqrt{(4)^{2}-4(5)(-2)}}{2(5)}$ $\cdot 36$ -4 $0.35,-1.15$

NOTES:

1 Where $b^{2}-4 a c$ is calculated incorrectly, the fourth mark is available only if $b^{2}-4 a c>0$
2 Alternative method (graphical solution)

- ${ }^{1}$ strategy: know to graph $y=5 x^{2}+4 x-2$
- ${ }^{2}$ communicate: indicate position of roots
-3 communicate: state first root correct to 2
decimal places
-4 communicate: state second root correct to 2 decimal places
- ${ }^{4} \quad 0.35$
-1

\bullet^{2}

- ${ }^{3}-1 \cdot 15$

Question No	Marking Scheme Give 1 mark for each ${ }^{\circ}$	Illustrations of evidence for awarding a mark at each •
7 (a)	Ans: m^{2} process: simplify indices	$\bullet^{1} m^{2} \xrightarrow{ }{ }^{\text {mark }}$
NOTES:		
(b)	Ans: $\sqrt{5}$ - ${ }^{1}$ process: simplify surd $\sqrt{20}$ - ${ }^{2}$ process: simplify surd $\sqrt{45}$ - ${ }^{3}$ process: state answer in simplest form	- ${ }^{1} \quad 2 \sqrt{5}$ - ${ }^{2} \quad 3 \sqrt{5}$ - ${ }^{3} \sqrt{5}$
NOTES:		
	For correct answer, without working	award $0 / 3$
8	Ans: $x=138.6,221.4$ - ${ }^{1}$ process: start to solve equation - 2 process: calculate one value of x -3 process: calculate second value of x	- ${ }^{1} \quad \cos x^{\circ}=-3 / 4$ ${ }^{2} \quad 138.6$ -3 221.4 3 marks
NOTES:		
1 2	Where $\cos x^{0}>0,1 / 3$ can be awarded when 2 valu incorrect value for $\cos x^{\circ}$ (working eased) Where a graphical solution has been used, the firs what graph is drawn and where the values occur	of x are calculated consistent with the ark is available for indicating
		award 0/3

$\begin{aligned} & \hline \text { Question } \\ & \text { No } \\ & \hline \end{aligned}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
10	Ans: $(p-q)^{2}$ - ${ }^{1}$ process: start to re-arrange formula ${ }^{2}$ process: make a the subject	- $1 \quad \sqrt{a}=p-q$ -2 $\quad a=(p-q)^{2}$ 2 marks
NOTES:	or a correct answer, with or without working	award 2/2
11	Ans: $\frac{8-a}{a(a+4)}$ - ${ }^{1}$ process: state a valid common denominator ${ }^{2}$ process: find correct numerator of equivalent fraction - process: state answer in simplest form	- ${ }^{1}$ any valid denominator - ${ }^{2}$ both numerators correct - $\frac{8-a}{a(a+4)}$
NOTES:		

TOTAL MARKS FOR PAPER 2

50
[END OF MARKING INSTRUCTIONS]

