2013 Mathematics

Intermediate 2 Units 1, 2 \& 3 Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Mathematics Intermediate 2 Units 1, 2 \& 3 Paper 1

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the $\operatorname{mark}(\mathrm{s})$.
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.
11. Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.
12. When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick, \times.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Part Two: Mathematics Intermediate 2: Paper 1, Units 1, 2 and 3

Question		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
1		Ans: $\boldsymbol{b}(\mathbf{6} a-7 \boldsymbol{c})$ - ${ }^{1}$ process: factorise correctly	1	- ${ }^{1} \quad b(6 a-7 c)$
2		Ans: $y=-\frac{4}{3} x+4$ - ${ }^{1}$ process: state y-intercept or c in $\mathrm{y}=\mathrm{m} x+\mathrm{c}$ - ${ }^{2}$ process: find gradient - ${ }^{3}$ process: state correct equation of line	3	- ${ }^{1} \quad c=4$ - $\quad \mathrm{m}=-\frac{4}{3}$ - $3=-\frac{4}{3} x+4$
Notes:				
	For	correct answer without working		award 3/3
2.		$=-\frac{4}{3} x$		award 1/3
3. Where m and/or c is calculated incorrectly the working must be followed through with a possibility of awarding $1 / 3$ or $2 / 3$				
4. If the equation is stated incorrectly and there is no working, $1 / 3$ can be awarded for correct gradient or correct y-intercept				
5. For an incorrect equation (ie both m and c are incorrect) without working eg $y=4 x-\frac{4}{3}$ award 0/3				

	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
3	Ans: $\mathbf{6 . 2 8} \mathrm{cm}$ - ${ }^{1}$ strategy: know to express arc as fraction of a circle - ${ }^{2}$ strategy: know how to find length of arc - process: correctly calculate length of arc	3	- $\quad \frac{72}{360}$ $\begin{array}{ll} \bullet^{2} & \frac{72}{360} \times 3 \cdot 14 \times 2 \times 5 \\ \bullet & 6 \cdot 28 \end{array}$
	$\frac{2}{360} \times 3 \cdot 14 \times 5^{2} \quad$ leading to 15.7 award of the final mark, calculation lent difficulty	st invol	award $2 / 3$ $3 \cdot 14$ and be of
4	Ans: $x=4, y=-2$ - ${ }^{1}$ process: scale system of equations - ${ }^{2}$ process: solve for one variable - ${ }^{3}$ process: solve for other variable	3	-1 $\begin{aligned} & 10 x-5 y=50 \\ & 4 x+5 y=6 \end{aligned}$ - ${ }^{2} \quad x=4$ - ${ }^{3} y=-2$
Notes: 1. For a correct answer obtained from 2 tables of values or solving 2 equations graphically or trial and improvement			
	For a correct answer without working award 0/3		
3.	Where an error occurs in scaling the system of equations, working must be followed through with the possibility of awarding $2 / 3$		
4.	An incorrect answer for the first variable must be followed through with the possibility of awarding $2 / 3$		

	ion	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
6	b	Ans:	2	- ${ }^{1} \quad$ endpoints at 10 and 50 - box showing $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$
Notes: 1. Incorrect answers in part (a) must be followed through to give the possibility of awarding $2 / 2$ 2. The boxplot must be drawn to a reasonable scale				
6	c	Ans: In general, the fourth year pupils spend more time on homework. There is less variation in the times spent on homework in fourth year than in first year. - ${ }^{1}$ communicate: valid comment about the average time - ${ }^{2}$ communicate: valid comment about the spread of times	2	- ${ }^{1}$ comment - ${ }^{2}$ comment
Notes: 1. Do not accept: "The fourth years had a higher median than the first years" "There was a longer period of time spent on homework in the second boxplot"				

	stion	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
7		Ans: $\frac{(x+4)}{(x-5)}$ - ${ }^{1}$ process: start to factorise denominator - ${ }^{2}$ process: factorise denominator completely -3 process: correctly simplify fraction	3	- ${ }^{1}$ one correct factor - ${ }^{2} \quad(x+4)(x-5)$ - $\frac{(x+4)}{(x-5)}$
Notes: 1. Where the denominator has been factorised as: $\begin{array}{ll} (x+1)(x-20) & (x-1)(x+20) \\ (x+2)(x-10) & (x-2)(x+10) \\ (x-4)(x+5) & \end{array}$				
8		Ans: $\mathbf{1 8 0}^{\circ}$ - ${ }^{1}$ communicate: state period	1	- ${ }^{1} 180^{\circ}$
9	a	Ans: (4, 20) - ${ }^{1}$ communicate: state clearly one coordinate - ${ }^{2}$ communicate: state clearly coordinates of maximum turning point	2	- ${ }^{1}(4, y)$ or $(x, 20)$ - ${ }^{2} \quad(4,20)$
Notes: 1. For an answer of $x=4, y=20$ award $1 / 2$ 2. For an answer of 4,20 award $1 / 2$ 3. For an answer of $(20,4)$ award $0 / 2$				

	stion	Marking Scheme Give 1 mark for each •	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Illustrations of evidence for awarding a mark at each •
9	b	Ans: $x=4$ - ${ }^{1}$ communicate: state equation	1	-1 $x=4$
Notes: 1. For an answer of (a) $x=4$ and (b) $(4,20)$ 2. An incorrect answer in part (a) must be followed through				
10		Ans: The graph of $y=\sin (x-90)^{\circ}$ from 0° to 360° - process: know the max $=1$ and the $\min =-1$ - ${ }^{2}$ process: move graph of $\sin x^{\circ}$ to the right by 90° -3 process: draw curve correctly	3 $\overrightarrow{0 x}$	- ${ }^{1}$ evidence from graph - ${ }^{2}$ evidence from graph eg sine graph from $(0,-1)$ to $(90,0)$ or sine graph starting at $(90,0)$ -3 evidence
Notes: 1. Disregard poor draughtsmanship 2. The $3^{\text {rd }}$ mark can be awarded for one cycle of any sine or cosine curve being drawn from 0° to 360°				

TOTAL MARKS FOR PAPER 1

2013 Mathematics

Intermediate 2 Units 1, 2 \& 3 Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Mathematics Intermediate 2 Units 1, 2 \& 3 Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the $\operatorname{mark}(\mathrm{s})$.
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.
11. Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.
12. When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick, \downarrow.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Part Two: Mathematics Intermediate 2: Paper 2, Units 1, 2 and 3

	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
1	Ans: $x^{2}-12 x-10$ - ${ }^{1}$ process: start to multiply out brackets - ${ }^{2}$ process: complete the process by multiplying out brackets correctly - ${ }^{3}$ process: collect like terms which must include x^{2} term	3	- ${ }^{1}$ evidence of any two correct terms eg $x^{2}-5 x$ - $\quad x^{2}-5 x+2 x-10$ - $\quad x^{2}-12 x-10$
Notes: 1. Where candidates have attempted to "simplify" beyond the correct answer, the 3rd mark is not available			
2	Ans: 4 years because $307200<375000$ - ${ }^{1}$ strategy: know how to decrease 750000 by 20% - ${ }^{2}$ strategy: continue strategy until value is below half -3 process: carry out the calculations correctly, continuing for at least 4 years or until the value is less than half - process/ communication: state response which must compare above answer with 375000	4	${ }^{-1} \times 0.8$ - ${ }^{2} \quad 750000 \times 0.8^{4}$ -3 307200 - ${ }^{4} 4$ years because $307200<375000$
Notes: 1. Where an incorrect percentage has been used, the working must be followed through to give the possibility of awarding 3/4 2. Where a candidate has an answer of 4 years and has calculated 307200 and 375000 , the $4^{\text {th }}$ mark is available 3. For a correct answer without working award 0/4			

	tio		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
6	a	i	Ans: $\bar{x}=82$ - process: calculate mean	1	- ${ }^{1} \bar{x}=82$
6	a	ii	Ans: $s=3.54$ - ${ }^{1}$ process: $(x-\bar{x})^{2}$ $\bullet{ }^{2}$ process: substitute into formula - 3 process: calculate standard deviation	3	$\begin{array}{ll} \bullet & 4,16,25,4,1 \\ \bullet^{2} & \sqrt{\frac{50}{4}} \\ \bullet^{3} & 3.54 \end{array}$
Notes: 1. For use of alternative formula in part (a) (ii), award marks as follows: ${ }^{1}{ }^{1}$ process: calculate Σx and Σx^{2} - 410 and 33670 - ${ }^{2}$ process: substitute into formula - $\sqrt{\frac{33670-\frac{410^{2}}{5}}{4}}$ - ${ }^{3}$ process: calculate standard deviation - ${ }^{3} 3.54$					
6	b		Ans: mean = 102 standard deviation $=3.54$ - ${ }^{1}$ process: state mean - ${ }^{2}$ process: state standard deviation	2	$\begin{array}{ll} \bullet & 102 \\ \bullet^{2} & 3.54 \end{array}$

	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
8	Ans: $\quad b=\sqrt{\frac{a-c}{3}}$ - ${ }^{1}$ process: start to re-arrange formula - ${ }^{2}$ process: continue process - ${ }^{3}$ process: make b the subject	3	- $1 \quad 3 b^{2}=a-c$ $\bullet^{2} \quad b^{2}=\frac{a-c}{3}$ -3 $\quad b=\sqrt{\frac{a-c}{3}}$
	correct answer without working cond mark is available for division ird mark is available for taking the s	root of	award 0/3 expression for b^{2}
9	Ans: $x^{3} y$ - ${ }^{1}$ process: start to simplify - ${ }^{2}$ process: fully simplify	2	$\begin{array}{ll} \bullet & x^{3} \text { or } y^{1} \\ \bullet^{2} & x^{3} y \end{array}$
Notes: 1. For the following answers $\frac{x^{3}}{y^{-1}}$ $\frac{x^{3} y}{1}$			

	estion	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
11		Ans: $\frac{8 x+7}{(x+2)(x-1)}$ - ${ }^{1}$ process: state a valid denominator - ${ }^{2}$ process: find correct numerator of equivalent fraction - 3 process: state answer in simplest form	3	- ${ }^{1} \quad$ any valid denominator - ${ }^{2} \quad$ both numerators correct -3 $\frac{8 x+7}{(x+2)(x-1)}$
Notes: 1. In this question, working subsequent to a correct answer should be ignored				
2.	For	$\frac{3(x-1)+5(x+2)}{(x+2)(x-1)}=\frac{8 x+7}{x^{2}+x-2}$		award 3/3 $\quad \checkmark \checkmark \checkmark$
		$\frac{3(x-1)+5(x+2)}{x^{2}-2}=\frac{8 x+7}{x^{2}-2}$		award 2/3 $\times \checkmark \checkmark$

	Marking Scheme Give 1 mark for each e	Max Mark	Illustrations of evidence for awarding a mark at each •
13	Ans: 49s, 131s - ${ }^{1}$ process: substitute correctly - ${ }^{2}$ process: rearrange correctly - ${ }^{3}$ process: calculate one angle - ${ }^{4}$ process: calculate second angle	4	- $\quad 7+5 \sin t^{\circ}=10 \cdot 8$ - ${ }^{2} \quad \sin t^{\circ}=3 \cdot 8 / 5$ - ${ }^{3} \quad t=49$ - $\quad t=131$
Notes:			
	For a correct answer arrived at by trial and improvement, only the first, third and fourth marks are available For the third mark to be awarded in a trial and improvement method, the candidate must - substitute into the expression a minimum of two values in the range 49-50, where one gives a height $<10 \cdot 8$ and the other a height $>10 \cdot 8$ and - select the value giving a height closer to $10 \cdot 8$		
	For a correct answer without working Where a graphical solution is used, the second mark is available for indicating what graph(s) is (are) drawn and where the values occur		

TOTAL MARKS FOR PAPER 2

