2015 Mathematics

Intermediate 2 Units 1, 2 and 3 Paper 1 (Non-Calculator)

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Intermediate 2 Units 1, 2 and 3 Paper 1 (Non-calculator)

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.
11. Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.
12. When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick, $\quad \Varangle$
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Part Two: Mathematics Intermediate 2: Paper 1, Units 1, 2 and 3 (Non-calculator)

	Marking Scheme	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Illustrations of evidence
1.	Ans: $10 x^{2}+33 x-18$ -1 process: start to multiply out brackets -2 process: complete the process of multiplying out brackets -3 process: collect like terms, which must include a term in x^{2}.	3	-1 evidence of any 2 correct terms, (eg $10 x^{2}-6 x$) -2 $10 x^{2}-6 x+30 x-18$ -3 $10 x^{2}+33 x-18$
Notes:			
2.	Ans: $1884 \mathrm{~cm}^{3}$ - ${ }^{1}$ process: substitute correctly into the formula for volume of a cone -2 process: correct calculation	2	$\bullet^{1} \mathrm{~V}=1 / 3 \times 3.14 \times 10^{2} \times 18$ $\bullet^{2} 1884$
Notes:			
1. Alternative correct answers:		$\begin{aligned} & \times 18) \\ & \times 3 \cdot 14 \end{aligned}$	$\left.10^{2} \times 18\right)$
2. The second mark is available for a calculation involving 4 values including a fraction and $3 \cdot 14$			

	Marking Scheme	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Illustrations of
3.	Ans: 39 ${ }^{\circ}$ - ${ }^{1}$ process: know that angle OBA is a right angle - ${ }^{2}$ process: know that angle DFE is a right angle -3 process: calculate the size of angle BDF	3	- ${ }^{1}$ angle $\mathrm{OBA}=90^{\circ}$ or angle $\mathrm{OBC}=90^{\circ}$ or angle OBD $=13^{\circ}$ \bullet^{2} angle DFE $=90^{\circ}$ or angle FDE $=26^{\circ}$ ${ }^{3} 39^{\circ}$
Notes: 1. The first two marks may be awarded for information marked on a diagram. 2. An answer of 39° must be stated outwith the diagram for the third mark to be awarded 3. For an answer of 39° with no relevant working			
4.	Ans: $k=3$ - ${ }^{1}$ process: substitute correctly into formula \bullet^{2} process: find k	2	$\bullet^{1} 48=k \times 4^{2}$ $\bullet^{2} k=3$
Notes: 1. For a correct answer without working			

Notes:

1. Where a candidate has worked out the standard deviation, award marks as follows:

- ${ }^{1}$ process: find \bar{x} and $(x-\bar{x})^{2}$
- ${ }^{1} 3$ and 4, 1, 1, 1, 25
- ${ }^{2}$ process: substitute into formula
-2 $\sqrt{\frac{32}{5-1}}$
$\bullet{ }^{3}$ process: calculate standard deviation
- $\sqrt{8}$

2. For use of alternative formula award marks as follows:
\bullet^{1} process: find $\sum x$ and $\sum x^{2}$

- ${ }^{2}$ process: substitute into formula for a
\bullet^{3} process: calculate value of a
- ${ }^{1} 15$ and 77
-2 $\frac{77-\frac{15^{2}}{5}}{5-1}$
$\bullet^{3} 8$

3. For a final answer of $a=\sqrt{8}$ award 2/3
4. Disregard any attempt to simplify $\sqrt{8}$
5. For a correct answer without working award 0/3

Qu	Marking Scheme	Max Mark	Illustrations of evidence
10.	Ans: $7 \sqrt{5}$ - ${ }^{1}$ process: simplify surd $\sqrt{45}$ -2 process: simplify surd $\sqrt{20}$ -3 process: state answer in simplest form	3	$\begin{array}{ll} \bullet & 3 \sqrt{5} \\ \bullet^{2} & 2 \sqrt{5} \\ \bullet & 7 \sqrt{5} \end{array}$
Notes:			
11.	Ans: Straight line drawn sloping down from left to right, crossing the y axis above the origin. - ${ }^{1}$ interpret: realise $m<0$ represents a downward sloping line - ${ }^{2}$ interpret: realise $c>0$ represents a y-intercept above the origin	2	 - ${ }^{1}$ line with downward slope drawn on graph - ${ }^{2}$ line drawn with y-intercept above origin
Notes: 1. Where a candidate has omitted $x, y, 0$ from perpendicular axes, full marks are still available			

	Marking Scheme	Max Mark	Illustrations of evidence
12.	Ans: 34 - ${ }^{1}$ strategy: start to solve problem - ${ }^{2}$ process: find age of eighth member	2	- ${ }^{1}$ evidence (see note 1) - ${ }^{2} 34$
Notes: 1. Candidate may attempt to list the ages of the 7 original members $\text { eg 17, 20, ?, 24, ?, 32, } 37$ 2. For a correct answer without working			

TOTAL MARKS FOR PAPER 1

2015 Mathematics

Intermediate 2 Units 1, 2 \& 3 Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.
11. Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.
12. When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates’ responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick, \quad.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Part Two: Mathematics Intermediate 2: Units 1, 2 and 3 Paper 2

	stio		Marking Scheme	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Illustrations of evidence
2.	(a)		Ans: 4/21 ${ }^{1}{ }^{1}$ process: find probability	1	- ${ }^{1}$ 4/21 (or equivalent)
2.	(b)	(i) (ii) (iii)	Ans: (i) $Q_{2}=58$ (ii) $Q_{1}=\mathbf{4 6} \cdot 5$ (iii) $Q_{3}=69$ ${ }^{-1}$ process: calculate the median ${ }^{-1}$ process: calculate the lower quartile ${ }^{1}{ }^{1}$ process: calculate the upper quartile	3	- ${ }^{1} \mathrm{Q}_{2}=58$ -1 $\mathrm{Q}_{1}=46 \cdot 5$ - ${ }^{1} \quad Q_{3}=69$
2.	(c)		Ans: The SIQR for the museum was $11 \cdot 25$ so the number of visitors to the museum was more varied. - ${ }^{1}$ strategy: calculate SIQR for the museum -2 communication: valid comment about spread of number of visitors	2	- ${ }^{1} \quad \mathrm{SIQR}=11 \cdot 25$ - ${ }^{2}$ comment
Notes: 1. Any comment must be based on a calculation of SIQR for museum					

	stion	Marking Scheme	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Illustrations of
3.		Ans: 0.78 km - ${ }^{1}$ process: substitute correctly into cosine rule - ${ }^{2}$ process: calculate AB^{2} - ${ }^{3}$ process: calculate length of AB	3	$\begin{aligned} & \bullet{ }^{1} c^{2}=1.35^{2}+1.2^{2}-2 \times 1.35 \times \\ & \\ & 1.2 \times \cos 35^{\circ} \\ & \bullet \quad 0 \cdot 608 \ldots \\ & \bullet \quad 0.78 \end{aligned}$
Notes: 1. For 0.8 with valid working, award $3 / 3$ 2. Disregard errors due to premature rounding provided there is evidence. eg $1 \cdot 35^{2}+1 \cdot 2^{2}-2 \times 1 \cdot 35 \times 1 \cdot 2 \times 0 \cdot 8=0 \cdot 6705 \Rightarrow$ final answer $=0 \cdot 82$, award $3 / 3$ 3. For 2.49 (uses RAD) or 0.71 (uses GRAD), with working award $3 / 3$ 4. Correct answer without working, award $0 / 3$				
4.	(a)	Ans: $y=0.75 x+10$ - ${ }^{1}$ process: find gradient - ${ }^{2}$ process: state y-intercept or c in $y=m x+c$ - ${ }^{3}$ communicate: state equation of line	3	- ${ }^{1} 0 \cdot 75$ or equivalent - ${ }^{2} 10$ $\bullet^{3} y=0 \cdot 75 x+10$
4.	(b)	Ans: 70\% - ${ }^{1}$ process: calculate Unit 2% using equation	1	- ${ }^{1} y=0 \cdot 75 \times 80+10=70$
Notes: (a) 1. For a correct answer without working award $3 / 3$ 2. Where m and/or c are incorrect, the working must be followed through to give the possibility of awarding $1 / 3$ or $2 / 3$ 3. For $y=0.75 x$ 4. If the equation is stated incorrectly and there is no working, $1 / 3$ can be awarded for correct gradient or correct y-intercept 5. For an incorrect equation (ie both m and c incorrect), without working eg $y=10 x+0 \cdot 75$				

Question		Marking Scheme	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Illustrations of evidence
5.		Ans: 10s - ${ }^{1}$ strategy: know how to start division calculation -2 process: continue process -3 process: express in simplest form	3	- $\frac{5 t}{s} \times \frac{2 s^{2}}{t}$ or equivalent -2 evidence of correctly cancelling either variable OR $\frac{10 t s^{2}}{s t}$ $\bullet^{3} 10 s$
Notes:				
	Correct $\text { For } \frac{10 \mathrm{~s}}{1}$	wer without working		award $3 / 3$ award 2/3 ($\checkmark \checkmark x)$

	estion	Marking Scheme	Max Mark	Illustrations of evidence
7.		Ans: $10 p^{4}$ - ${ }^{1}$ process: simplify powers in numerator ${ }^{-2}$ process: simplify constants -3 process: simplify powers in fraction	3	- $\frac{5 \times 4 p^{5}}{2 p}$ - $\frac{10 p^{5}}{p}$ - $10 p^{4}$
Notes: 1. For a correct answer without working,				
8.		Ans: $\mathbf{1 2 0}^{\circ}$ - ${ }^{1}$ communicate: state the period	1	- ${ }^{1} 120$
Notes:				
9.		Ans: $x=63.4$ and $x=243.4$ - ${ }^{1}$ process: solve equation for $\tan x^{0}$ - ${ }^{2}$ process: find one value for x ${ }^{3}$ process: find second value for x	3	- ${ }^{1} \tan x^{0}=2$ or equivalent - ${ }^{2} x=63(\cdot 4)$ - $^{3} x=243(\cdot 4)$
Notes: 1. Where a graphical solution has been used, the first mark is available for indicating what graph is drawn and where the values occur.				

Question		Marking Scheme	Max Mark	Illustrations of evidence
10.		Ans: $\mathbf{8 . 8}$ centimetres - ${ }^{1}$ strategy: know how to find expression for volume of mug - ${ }^{2}$ process: equate volume to 400 \bullet^{3} communicate: state value for height correct to one decimal place	3	- ${ }^{1} 3 \cdot 14 \times 3 \cdot 8^{2} \times h$ - ${ }^{2} 3 \cdot 14 \times 3 \cdot 8^{2} \times h=400$ - ${ }^{3} 8.8$ (cm)
Notes: 1. Accept variations in the value of the height due to variations in the value of π. 2. Where a candidate uses $3.14 \times 3.8 \times h$, marks 2 and 3 are still available				
11.	(a)	Ans: $\mathbf{- 1 . 5}$ (or equivalent) - ${ }^{1}$ strategy: know how to find gradient - ${ }^{2}$ communicate: state gradient	2	\bullet^{1} from diagram or $y=\frac{-3}{2} x+6$ $\bullet^{2}-1 \cdot 5$ (or equivalent)
	(b)	Ans: 6 - ${ }^{1}$ communication: state y-intercept	1	$\bullet^{1} 6$
Notes: (a) 1. For a correct answer without working award 2/2 (b) 1. For an answer of $(0,6)$ award 1/1				

Question		Marking Scheme	Max Mark	Illustrations of evidence
13.		Ans: $\mathbf{2 3 . 8}$ kilometres - ${ }^{1}$ process: calculate the size of angle PQR - ${ }^{2}$ process: correct substitution into sine rule -3 strategy: know how to solve equation - ${ }^{4}$ process: calculate PR correctly	4	- ${ }^{1} 52^{\circ}$ - $2 \frac{q}{\sin 52^{\circ}}=\frac{25}{\sin 56^{\circ}}$ - $q=\frac{25 \sin 52^{\circ}}{\sin 56^{\circ}}$ - ${ }^{4} 23 \cdot 8$
Notes:				
1. Disregard errors due to premature rounding provided there is evidence				
2. Where incorrect sizes are used for angles, marks 3 and 4 are still available for rearranging and processing a sine rule calculation$\text { eg } \frac{25}{\sin 160}=\frac{q}{\sin 128} \rightarrow q=57 \cdot 6 \quad \text { award } 2 / 4(\times \times \checkmark \checkmark)$				
3. $\frac{q}{52}=\frac{25}{56} \rightarrow q=23 \cdot 2 \ldots$.				award 1/4 ($\times \times \times \checkmark$)
4. For a correct answer without working				award 0/4
	5. Use of RAD or GRAD (working must be shown)			award 4/4
(b) For $-47 \cdot 3$ or $47 \cdot 3$ (uses RAD)				award 3/4

TOTAL MARKS FOR PAPER 2

TOTAL MARKS FOR PAPER 1 \& 2
 80

2015 Mathematics

Intermediate 2 Units 1, 2 and Applications Paper 1 (Non-calculator)

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA’s NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Mathematics Intermediate 2 Units 1, 2 and Applications Paper 1 (Non-calculator)

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.
11. Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.
12. When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates’ responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick,
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Part Two: Mathematics Intermediate 2: Paper 1, Units 1, 2 and Applications Paper 1 (Non-calculator)

	ion	Marking Scheme	Max Mark	Illustrations of
3.		Ans: 39 ${ }^{\circ}$ - ${ }^{1}$ process: know that angle OBA is a right angle - ${ }^{2}$ process: know that angle DFE is a right angle -3 process: calculate the size of angle BDF	3	- ${ }^{1}$ angle $\mathrm{OBA}=90^{\circ}$ or angle $\mathrm{OBC}=90^{\circ}$ or angle $\mathrm{OBD}=13^{\circ}$ \bullet^{2} angle DFE $=90^{\circ}$ or angle FDE $=26^{\circ}$ ${ }^{3} 39^{\circ}$

Notes:

1. The first two marks may be awarded for information marked on a diagram.
2. An answer of 39° must be stated outwith the diagram for the third mark to be awarded
3. For an answer of 39° with no relevant working

Notes:

1. The third mark is available for a calculation involving addition, subtraction and percentage.

2. Where a candidate has worked out the standard deviation, award marks as follows:

- ${ }^{1}$ process: find \bar{x} and $(x-\bar{x})^{2}$
${ }^{1}{ }^{1} 3$ and 4, 1, 1, 1, 25
- ${ }^{2}$ process: substitute into formula
-2 $\sqrt{\frac{32}{5-1}}$
${ }^{3}$ process: calculate standard deviation
- ${ }^{3} \sqrt{8}$

2. For use of alternative formula award marks as follows:
${ }^{-1}$ process: find $\sum x$ and $\sum x^{2}$

- ${ }^{1} 15$ and 77
- ${ }^{2}$ process: substitute into formula for a

$$
\bullet^{2} \frac{77-\frac{15^{2}}{5}}{5-1}
$$

- ${ }^{3}$ process: calculate value of a
$\bullet^{3} 8$

3. For a final answer of $a=\sqrt{8}$
award 2/3
4. Disregard any attempt to simplify $\sqrt{8}$
5. For a correct answer without working award 0/3

Question		Marking Scheme	Max Mark	Illustrations of evidence
6.		Ans: 72 - ${ }^{1}$ strategy: substitute correctly into formula - ${ }^{2}$ process: carry out all calculations correctly	2	$\text { - } A=\frac{1}{2} \times 8 \times(6+12)$ $\bullet^{2} \quad A=72$
Notes:				
7.	(a)	Ans: 78 ${ }^{1}$ process: calculate value in cell C4	2	$\bullet^{1} 78$
7.	(b)	Ans: Formula contains circular reference - ${ }^{1}$ communication: explain problem		- ${ }^{1}$ eg Formula should be B2:B5 or formula should say B5 not B7 or formula contains circular reference
Notes:				

Question		Marking Scheme	Max Mark	Illustrations of evidence
11.	Ans: Straight line drawn sloping down from left to right, crossing the \boldsymbol{y} axis above the origin.	2		

Notes:

Where a candidate has omitted $x, y, 0$ from perpendicular axes, full marks are still available

12.	Ans: 34 - ${ }^{1}$ strategy: start to solve problem ${ }^{\circ}{ }^{2}$ process: find age of eighth member	2	- ${ }^{1}$ evidence (see note 1) - 234

Notes:

1. Candidate may attempt to list the ages of the 7 original members eg 17, 20, ?, 24, ?, 32, 37
2. For a correct answer without working

TOTAL MARKS FOR PAPER 1

2015 Mathematics

Intermediate 2 Units 1, 2 and Applications Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Mathematics Intermediate 2 Units 1, 2 and Applications Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the $\operatorname{mark}(\mathrm{s})$.
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.
11. Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.
12. When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates’ responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick, $\quad \downarrow$.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Part Two: Mathematics Intermediate 2: Units 1, 2 and Applications Paper 2

Question		Marking Scheme	Max Mark	Illustrations	evidence	
1.		Ans: £253 628 (-16) - ${ }^{1}$ strategy: know how to increase by 2.8\% -2 strategy: know how to calculate expected value - ${ }^{3}$ process: carry out calculations correctly within a valid strategy	3	$\begin{aligned} & \bullet{ }^{1} \times 1 \cdot 028 \\ & \bullet^{2} 240000 \\ & \bullet^{3} 253628 \end{aligned}$	$\cdot 028^{2}$	
Notes:						
1. For an answer of 253628 without working					award 3/3	$\checkmark \checkmark \checkmark$
2. Where an incorrect percentage is used, the working must be followed through to give the possibility of awarding $2 / 3$						
3. For an answer of 246720 ($240000 \times 1 \cdot 028$), no working necessary					award 1/3	$\checkmark \times x$
4. For an answer of $493440(240000 \times 1.028 \times 2)$, with working					award 1/3	$\checkmark x x$
5. For an answer of $253440(240000+240000 \times 0.028 \times 2)$, with working					award $1 / 3$	$\checkmark x x$
6. For an answer of $13440(240000 \times 0.028 \times 2)$					award 0/3	$x \times x$

	stion	Marking Scheme	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Illustrations of
3.		Ans: $\mathbf{0 . 7 8} \mathbf{~ k m}$ - ${ }^{1}$ process: substitute correctly into cosine rule - ${ }^{2}$ process: calculate AB^{2} - ${ }^{3}$ process: calculate length of AB	3	$\begin{aligned} & \bullet{ }^{1} c^{2}=1 \cdot 35^{2}+1 \cdot 2^{2}-2 \times 1 \cdot 35 \times \\ & \quad 1 \cdot 2 \times \cos 35^{\circ} \\ & \bullet \quad 0 \cdot 608 \ldots \\ & \bullet \end{aligned}$
Notes: 1. For 0.8 with valid working, award $3 / 3$ 2. Disregard errors due to premature rounding provided there is evidence. eg $1 \cdot 35^{2}+1 \cdot 2^{2}-2 \times 1 \cdot 35 \times 1 \cdot 2 \times 0 \cdot 8=0 \cdot 6705 \Rightarrow$ final answer $=0 \cdot 82$, award $3 / 3$ 3. For $2 \cdot 49$ (uses RAD) or 0.71 (uses GRAD), with working award $3 / 3$ 4. Correct answer without working,				
4.	(a)	Ans: $\boldsymbol{y}=\mathbf{0 . 7 5 x}+\mathbf{1 0}$ - ${ }^{1}$ process: find gradient - ${ }^{2}$ process: state y-intercept or c in $y=\mathrm{m} x+\mathrm{c}$ - 3 communicate: state equation of line	3	- ${ }^{1} 0.75$ or equivalent - ${ }^{2} 10$ - ${ }^{3} y=0.75 x+10$
4.	(b)	Ans: 70\% - ${ }^{1}$ process: calculate Unit 2% using equation	1	- 1 y $=0.75 \times 80+10=70$
Notes: (a) 1. For a correct answer without working award 3/3 2. Where m and/or c are incorrect, the working must be followed through to give the possibility of awarding $1 / 3$ or $2 / 3$ 3. For $y=0.75 x$ 4. If the equation is stated incorrectly and there is no working, $1 / 3$ can be awarded for correct gradient or correct y-intercept 5. For an incorrect equation (ie both m and c incorrect), without working eg $y=10 x+0 \cdot 75$				

Question		Marking Scheme	Max Mark	Illustrations of evidence
7.		Ans: 8.8 centimetres - ${ }^{1}$ strategy: know how to find expression for volume of mug - ${ }^{2}$ process: equate volume to 400 -3 communicate: state value for height correct to one decimal place	3	- ${ }^{1} 3 \cdot 14 \times 3 \cdot 8^{2} \times h$ - ${ }^{2} 3 \cdot 14 \times 3 \cdot 8^{2} \times h=400$ - 8.8 (cm)
Notes: 1. Accept variations in the value of the height due to variations in the value of π. 2. Where a candidate uses $3 \cdot 14 \times 3 \cdot 8 \times h$, marks 2 and 3 are still available				
8.	(a)	Ans: - $\mathbf{1 . 5}$ (or equivalent) - ${ }^{1}$ strategy: know how to find gradient $\bullet{ }^{2}$ communicate: state gradient	2	- ${ }^{1}$ from diagram or $y=\frac{-3}{2} x+6$ $\bullet^{2}-1 \cdot 5$ (or equivalent)
	(b)	Ans: 6 - ${ }^{1}$ communication: state y-intercept	1	${ }^{1} 6$
Notes: (a) 1. For a correct answer without working (b) 1. For an answer of $(0,6)$				

Notes:

1. Accept variations in π; disregard premature or incorrect rounding of $\frac{34 \cdot 6}{\pi \times 12 \cdot 8}$
2. For $\frac{34 \cdot 6 \times 360}{\pi \times 6 \cdot 4}$, leading to an answer of 620 , award $3 / 4$ provided the criteria for the other marks are met.
3. Where the candidate has correctly calculated the acute angle AOB, with working award 3/4
4. For the use of πr^{2}, the third and fourth marks are available.

TOTAL MARKS FOR PAPER 2
 50

TOTAL MARKS FOR PAPER 1 \& 2 80
[END OF MARKING INSTRUCTIONS]

