The Mathematics of RSA

What follows is a straightforward mathematical description of the mechanics of
RSA encryption and decryption.

(1) Alice picks two giant prime numbers, p and 4. The primes should be
enormous, but for simplicity we assume that Alice chooses p = 17,
g4 = 11. She must keep these numbers secret.

(2) Alice multiplies them together to get another number, N. In this case N =
187. She now picks another number ¢, and in this case she chooses ¢ =7,

(eand (p - 1) x (g - 1) should be relatively prime, but this is a technicality.)

(3) Alice can now publish ¢ and N in something akin to a telephone directory.
Since these two numbers are necessary for encryption, they must be available
to anybody who might want to encrypt a message to Alice. Together these
numbers are called the public-key. (As well as being part of Alice’s public-
key, e could also be part of everybody else’s public-key. However, everybody
must have a different value of N, which depends on their choice of p and 4.)

(4) To encrypt a message, the message must first be converted into a number, M.
For example, a word 1s changed into ASCII binary digits, and the binary
digits can be considered as a decimal number. M is then encrypted to give
the ciphertext, C, according to the formula

C = M¢ (mod N)

(5) Imagine that Bob wants to send Alice a simple kiss: just the letter X. In

ASCII this 1s represented by 1011000, which is equivalent to 88 in decimal.
So, M = 88.

(6) To encrypt this message, Bob begins by looking up Alice’s public-key, and
discovers that N = 187 and ¢ = 7. This provides him with the encryption for-
mula required to encrypt messages to Alice. With M = 88, the formula gives

C =88’ (mod 187)

(7) Working this out directly on a calculator is not straightforward, because the
display cannot cope with such large numbers. However, there is a neat trick
for calculating exponentials in modular arithmetic. We know that, since 7 =

4+2+1,

887 (mod 187) = [88* (mod 187) x 88% (mod 187) x 88" (mod 187)] (mod 187)
88! = 88 = 88 (mod 187)
882 = 7,744 = 77 (mod 187)
884 = 59,969,536 = 132 (mod 187)

887 — 881 x 882 x 884 =88 x 77 x 132 = 894,432 =11 (mod 187)

Bob now sends the ciphertext, C= 11, to Alice.

(8) We know that exponentials in modular arithmetic are one-way functions, so
it is very difficult to work backwards from C = 11 and recover the original

message, M. Hence, Eve cannot decipher the message.

(9) However, Alice can decipher the message because she has some special infor-
mation: she knows the values of p and 4. She calculates a special number, d,
the decryption key, otherwise known as her private-key. The number 4 is cal-

culated according to the following formula
ex d =1 (mod (p-1) x (¢-1))
7x d =1 (mod 16 x 10)
7% d =1 (mod 160)
d=23

(Deducing the value of 4 is not straightforward, but a technique known as
Euclid’s algorithm allows Alice to find 4 quickly and easily.)

(10) To decrypt the message, Alice simply uses the following formula,
M = C? (mod 187)
M= 1123 (mod 187)
M =[11! (mod 187) x 112 (mod 187) x 11% (mod 187) x 11!® (mod 187)] (mod 187)
M=11x 121 x 55 x 154 (mod 187)

M =88 = X 1in ASCIL.

Rivest, Shamir and Adleman had created a special one-way function, one that
could be reversed only by somebody with access to privileged information,
namely the values of p and 4. Each function can be personalised by choosing p
and ¢, which multiply together to give IN. The function allows everybody to
encrypt messages to a particular person by using that person’s choice of NN, but
only the intended recipient can decrypt the message because the recipient is the
only person who knows p and ¢4, and hence the only person who knows the
decryption key, 4.



