

2003 Mathematics

Higher

Finalised Marking Instructions

NB In and after the 2004 diet of examinations, the total number of marks for the Higher Mathematics examination will increase from 110 to 130. There will be <u>NO</u> other changes to the format of the examination.

To provide guidance to Centres on how the 20 additional marks will be allocated, additional pages have been added to the following 2003 Marking Instructions to show how an additional 20 marks could have been allocated to the 2003 examination.

Notes to the marking scheme for Higher Mathematics 2003

1. Illustrations where additional marks could be added to bring the overall total up to 130 are shown as follows:

Paper 1 extra marks are shown on pages 21-22 of the paper 1 m/s. Paper 2 extra marks are shown on pages 21-22 of the paper 2 m/s.

2. Legend for the coding at the beginning of each marking scheme:

1	2.1.1, 2.1.3	CN	С	03/101
question	syllabus code(s)	calculator neutral	level	catalogue no.
		NC non-calculator		
		C calculator required		

- Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
- 2. Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
- 3. The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made. This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.
- 4. Correct working should be ticked (✓). This is essential for later stages of the SQA procedures. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick (✓). In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted or wavy line. Work which is correct but inadequate to score any marks should be corrected with a double cross tick (X).
- 5. The total mark for each section of a question should be entered in red in the **outer** right hand margin, opposite the end of the working concerned.
 - Only the mark should be written, not a fraction of the possible marks.
 - These marks should correspond to those on the question paper and these instructions.
- 6. It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer.

- 7. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Accept answers arrived at by inspection or mentally where it is possible for the answer so to have been obtained. Situations where you may accept such working will be indicated in the marking instructions.
- cont/

Mathematics Higher: Instructions to Markers

- 8. Do not penalise:
 - working subsequent to a correct answer
 - omission of units
 - bad form
 - legitimate variations in numerical answers
 - correct working in the "wrong" part of a question
- 9. No piece of work should be scored through even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
- 10. If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
- 11. In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referal to the P.A. Please see the general instructions for P.A. referrals.
- 12. No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.
- 13 **Do not write any comments on the scripts**. A summary of acceptable notation is given on page 4.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:

- 1 Tick correct working.
- 2 Put a mark in the right-hand margin to match the marks allocations on the question paper.
- 3 Do not write marks as fractions.
- 4 Put each mark at the end of the candidate's response to the question.
- 5 Follow through errors to see if candidates can score marks subsequent to the error.
- 6 Do not write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Signs ✓	The tick. You are not expected to tick every line but of course you must check through the whole of a response.	Marks being allo normally be show $\frac{dy}{dx} = 4x - 7$		ould not margins
×	The cross and underline. Underline an error and place a cross at the end of the line.	$4x - 7 = 0$ $x = \frac{7}{4}$ $y = 3\frac{7}{8}$	× ו	2
×	The tick-cross. Use this to show correct work where you are following through subsequent to an error.	C = (1, -1) $m = \frac{3 - (-1)}{4 - 1}$ $m_{rad} = \frac{4}{3}$	×	
		$m_{rad} = \frac{1}{3}$ $m_{tgt} = \frac{-1}{\frac{4}{3}}$	∢• follow t	hrough
*	The double cross-tick. Use this to show correct work but which is inadequate to score any marks.	$m_{igt} = -\frac{3}{4}$ y - 3 = -\frac{3}{4}(x - 2)	ו ו	3
^	The roof. Use this to show something is missing such as a crucial step in a proof or a 'condition' etc.	$x^2 - 3x = 28$ $x = 7$	å ≫	1
	The tilde. Use this to indicate a minor transgression which is not being penalised (such as bad form).	$\sin(x) = 0.75 = inv \sin x$	$(0.75) = 48.6^{\circ}$	1
E	Eased. Where working is found correct whilst following through subsequent to an error, the working has been eased sufficiently for a mark not to be awarded.	$log_{3}(x-2) = 1$ $(x-2) = 3^{1}$ $x-2 = 3$ $x = 5$	Х Х• ХЕ	1
BOD	Benefit of Doubt. Use this where you have to decide between two consecutive marks and award the higher.			
All of the	use are to help us he more consistent and accurate			

All of these are to help us be more consistent and accurate.

It goes without saying that however accurate you are in marking, it is to no avail unless you have added the marks up correctly. Please double check totals!!

	Give 1 mark for each •	Illustrations for awarding each •
(b) Find the limit of this recurrence relation as $n \to \infty$. 4 1.4.3, 1.4.4 CN CB 03/90 ans: (a) $p = \frac{1}{2}, q = 11$ 2 marks (b) 16 $\frac{1}{2}$ 2 marks (c) 16 $\frac{1}{2}$ 2 marks bine process limit (c) 12 $\frac{1}{2}=16p+q$ 1 χ (c) 16 $\frac{1}{2}=16p+q$ 1 χ (c) 16 $\frac{1}{2}=10$ 1 χ (c) 16 $\frac{1}{$		$+q$ where $-1 and u_0 = 12.$
ans: (a) $p = \frac{1}{2}, q = 11$ 2 marks (b) $16\frac{1}{2}$ 2 marks • 1 ss: e.g. form two equations in p and q • 2 pd: process • 3 ss: algebraic strategy for limit • 4 pd: process limit $\frac{12 = 16p + q}{15 = 15p + q}$ $p = -3, q = 60$ • 2 \swarrow f.t. no limit exists since p outside range -1 to 1 • 3 \checkmark f.t. • 4 not available 2 marks given $\frac{12 = 16p + q}{1 = -3, q = 60}$ • 2 \checkmark f.t. $12 = 16p + q$ • 1 \checkmark 2 = marks given $\frac{12 = 16p + q}{1 = -3, q = 60}$ • 2 \checkmark f.t. 12 = 15p + q $p = -3, q = 60$ • 2 \checkmark f.t. $12 = 15p + q$ • 1 \checkmark $12 = 16p + q$ • 1 \checkmark $13 for (a) trial and improvement leading to answers other than the correct ones earn no marks 4 for any rounding eg p = 0.3 or 0.33 instead of p = \frac{1}{3}in (a) or (b) the candidate may not lose both * 2 and * 46$ other acceptable strategies for the limit at $* 3$ are $1 = \frac{1}{1-7}$ $1 = 7$ if p has been incorrectly valued ≥ 1 or $\le -1, *3$ may still be avarded for a statement that the limit does not exist but $* 4$ is not available. 8 candidates who choose values for pand q <i>ex nihilo</i> may still earn $* 3$ and $* 4$ 9 $* 4$ is lost if answers are left like $\frac{11}{3}$ but uncancelled		
Example 1 $12 = 16p + q$ $15 = 15p + q$ $p = -3, q = 60$ outside range -1 to 1 $\cdot 1 \times 1$ $\cdot 1 \times 15 = 15p + q$ $\cdot 2 \times f.t.$ $\cdot 4$ not available 2 marks given 1for $\cdot 1$ either two equations explicitly stated or a trial and improvement approach checking in particular that u_1 does in fact equal 15 and u_2 does in fact equal 162f.t. $\cdot 4$ not available 2 marks given 2for (a) correct answers with no working may only eam $\bullet 2$ (one mark being lost through lack of com- munication)3for (a) trial and improvement leading to answers other than the correct ones eam no marks4for any rounding eg $p = 0.3$ or 0.33 instead of $p = \frac{1}{3}$ in (a) or (b) the candidate loses $\bullet 2$ or $\bullet 4$ BUT candidates may not lose both $\bullet 2$ and $\bullet 4$ 4for the acceptable strategies for the limit at $\bullet 3$ are $\cdot L = \frac{4}{1-p}$ 5 $\cdot 4 \times$ \times $L = 15$ 6in mark given7if p has been incorrectly valued ≥ 1 or ≤ -1 , $\bullet 3$ may still be avarded for a statement that the limit does not exist but $\bullet 4$ is not available.8candidates who choose values for pand q ex nihilo may still eam $\bullet 3$ and $\bullet 4$	ans: (a) $p = \frac{1}{3}, q = 11$ 2 marks (b) $16\frac{1}{2}$ 2 marks •1 ss : e.g. form two equations in p and q •2 pd : process •3 ss : algebraic strategy for limit	• ² $p = \frac{1}{3}, q = 11$ • ³ e.g. $L = \frac{1}{3}L + 11$
2 marks givenother than the correct ones earn no marksExample 2for any rounding eg $p = 0.3$ or 0.33 instead of $p = \frac{1}{3}$ in (a) or (b) the candidate loses $\bullet 2$ or $\bullet 4$ BUT candidates may not lose both $\bullet 2$ and $\bullet 4$ $12 = 16p + q$ $\bullet 1 \times$ $15 = 15p + q$ $p = -3, q = 60$ $\bullet 2 \times f.t.$ $L = \frac{60}{1 - (-3)}$ $\bullet 3 \times$ $L = 15$ $\bullet 4 \times$ 1 mark given $\bullet 1$ mark given $\bullet 1$ if p has been incorrectly valued ≥ 1 or ≤ -1 , $\bullet 3$ may still be awarded for a statement that the limit does not exist but $\bullet 4$ is not available.8candidates who choose values for p and q ex nihilo may still earn $\bullet 3$ and $\bullet 4$ 9 $\bullet 4$ is lost if answers are left like $\frac{11}{\frac{2}{3}}$ but uncancelled	$12 = 16p + q \bullet 1 \chi$ $15 = 15p + q$ $p = -3, q = 60 \bullet 2 \chi \text{ f.t.}$ no limit exists since p outside range -1 to 1 \bullet 3 \chi \text{ f.t.}	 for •1 either two equations explicitly stated or a trial and improvement approach checking in particular that u₁ does in fact equal 15 and u₂ does in fact equal 16 for (a) correct answers with no working may only earn •2 (one mark being lost through lack of communication)
BUT candidates may not lose both •2 and •4 $12 = 16p + q \bullet 1 \times 1$ $15 = 15p + q$ $p = -3, q = 60 \bullet 2 \times f.t.$ $L = \frac{60}{1 - (-3)} \bullet 3 \times 1$ $L = 15 \bullet 4 \times 1$ 1 mark given BUT candidates may not lose both •2 and •4 6 other acceptable strategies for the limit at •3 are • $L = \frac{4}{1 - p}$ • "lost part" = "add on" i.e. $\frac{2}{3}L = 11$ 7 if <i>p</i> has been incorrectly valued $\ge 1 \text{ or } \le -1$, •3 may still be awarded for a statement that the limit does not exist but •4 is not available. 8 candidates who choose values for <i>p</i> and <i>q ex nihilo</i> may still earn •3 and •4 9 •4 is lost if answers are left like $\frac{11}{\frac{2}{3}}$ but uncancelled		other than the correct ones earn no marks
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 BUT candidates may not lose both •2 and •4 other acceptable strategies for the limit at •3 are L = q/(1-p) "lost part" = "add on" i.e. 2/3 L = 11 if p has been incorrectly valued ≥ 1 or ≤ -1, •3 may still be awarded for a statement that the limit does not exist but •4 is not available. candidates who choose values for pand q ex nihilo may still earn •3 and •4 •4 is lost if answers are left like 11/2 but uncancelled

Give 1 mark for each •	Illustrations for awarding each •
Given that $f(x) = \sqrt{x} + \frac{2}{x^2}$, find $f'(4)$.	5
1.3.2, 1.3.4 CN C 03/19 ans : $\frac{3}{16}$ 5 marks	
 ¹ pd : express in standard form ² pd : express in standard form ³ pd : differentiate fractional index ⁴ pd : differentiate negative index ⁵ pd : evaluation 	• ¹ $x^{\frac{1}{2}}$ stated or implied by •3 • ² $2x^{-2}$ stated or implied by •4 • ³ $\frac{1}{2}x^{-\frac{1}{2}}$ • ⁴ $-4x^{-3}$ • ⁵ $\frac{3}{16}$
	 Notes 1 if incorrectly expressed in standard form, follow throughs must match the mark descriptors. 2 •5 can only be awarded on a follow through provided the evaluation involves a fractional index and a negative index.
	3 for •5 accept $\frac{12}{64}$. 4 no marks can be gained for finding $f(4)$
Example 1	01
Example 1 $f(x) = x^{\frac{1}{2}} + 2x^{\frac{1}{2}} \bullet 1 \checkmark \\ \bullet 2 \checkmark \\ f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - x^{-\frac{3}{2}} \bullet 3 \checkmark \text{ f.t.} \\ \bullet 4 \checkmark \text{ f.t.} \\ f'(4) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \bullet 5 \checkmark \text{ f.t.}$	4 no marks can be gained for finding $f(4)$
$f(x) = x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} \qquad \bullet 1 \checkmark$ $\bullet 2 \chi$ $f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - x^{-\frac{3}{2}} \qquad \bullet 3 \chi \text{ f.t.}$ $\bullet 4 \chi \text{ f.t.}$	4 no marks can be gained for finding f(4) Example 2

-Mathematics H 2003 Paper 1 Marking Scheme : FINAL

	•								1 2003 Paper 1 Marking Scheme :	
	Give	1 ma	irk for e	ach •			Illu	strations fo	r awarding each •	
ł	A farmer sell brown eggs i X has the foll	n a bo	ox. g probał	oility dis	tributior	ı :		-	ents the number of	
			i	P(X = x)	$= \begin{cases} \frac{1}{3}k(7) \\ 0 \end{cases}$	-x) fo oth	or $x = 0$ nerwise	,1,2,3,4,5 aı	nd 6	
(. ,	he val	ue of <i>k</i> .	alue and	varianc	e of X, ti	he numb	er of brown e	eggs in a box.	:
53	4.2.11, 4.2.1 (a) ans : $\frac{3}{28}$ (b) ans : 2,		CN	C 03/ 2 mark 3 mark	s					
	 ¹ ss : use Σ ² pd : evalu ³ pd : calcu ⁴ pd : calcu ⁵ pd : calcu 	uate k Ilate e Ilate E	xpected 2(X ²)	value			 •¹ P(•² ΣP(•³ E(Σ) •⁴ E(Σ) •⁵ V(Σ) 	$X) \frac{7k}{3}, \frac{6k}{3}, \frac{5k}{3}, \frac$	4 <u>k</u> 3 <u>k</u> 2 <u>k</u> <u>k</u> 3 , 3 , 3 , 3 28	
	x	0	1	2	3	4	5	6		
		7 <u>k</u> 3		$\frac{5k}{3}$		$\frac{3k}{3}$	$\frac{2k}{3}$	$\frac{k}{3}$	$\Sigma = \frac{28k}{3} = 1 k = \frac{3}{28}$	
	P(x) $xP(x)$					3 12	2 10	$ \begin{array}{c} 1 \times \frac{1}{28} \\ 6 \times \frac{1}{28} \end{array} $	$\Sigma = \frac{56}{28} = 2$ $\Sigma = \frac{196}{28} = 7$	_
	$x^2 P(x)$	0	6	20	36	48	50	$36 \times \frac{1}{28}$	$\sum = \frac{196}{28} = 7$ var = 7 - 2 ² = 3	-

Give 1 mark for each •	Illustrations for awarding each •
Additional marks in Paper 1	
Question 1 +1	
 ¹ ic : rearrange in standard form ² ic : interpret gradient from linear equ. ³ ic : find perp. gradient ⁴ ic : state equation of line 	• $y = -4x + 1$ • $m = -4$ • $m_{perp} = \frac{1}{4}$
	• $y - 3 = \frac{1}{4}(x - (-1))$
Question 2 +1 • ¹ ic : start to complete square • ² pd : finish completing the square • ³ ic : sketch • ⁴ ic : sketch • ⁵ ic : sketch	 (x+3)² +2 U - shaped parabola minimum at (-3,2) intercept on y - axis at (0,11)
Question 3 +1 •1 ic: interpret unit vectors •2 ss: know to use scalar product and get zero •3 pd: process	• $\begin{bmatrix} 3\\2\\0 \end{bmatrix}$ and $\begin{bmatrix} 2\\-3\\4 \end{bmatrix}$ • ² for perpendicularity " $u.v$ "=0 • ³ $\begin{bmatrix} 3\\2\\0 \end{bmatrix} \begin{bmatrix} 2\\-3\\4 \end{bmatrix} = 6 - 6 + 0 = 0$
Question 4 +1 •1 ss: e.g. form two equations in p and q •2 pd: process •3 ic: state the condition for limit to exist •4 ss: algebraic strategy for limit •5 pd: process limit	• ¹ $15 = 12p + q, 16 = 15p + q$ • ² $p = \frac{1}{3}, q = 11$ • ³ since $-1 < \frac{1}{3} < 1$, limit exists • ⁴ e.g. $L = \frac{1}{3}L + 11$ • ⁵ $L = 16\frac{1}{2}$
Question 5 +1	
 ¹ pd : express in standard form ² pd : express in standard form ³ pd : differentiate fractional index ⁴ pd : differentiate negative index ⁵ pd : evaluation ⁶ pd : evaluation 	• ¹ $x^{\frac{1}{2}}$ • ² $2x^{-2}$ • ³ $\frac{1}{2}x^{-\frac{1}{2}}$ • ⁴ $-4x^{-3}$ • ⁵ $\frac{1}{2} \times 4^{-\frac{1}{2}} = \frac{1}{4}$ or $-4 \times 4^{-3} = -\frac{1}{16}$ • ⁶ $\frac{3}{16}$

Give 1 mark for each •	Illustrations for awarding each •
Question 8 +1	1
Question 8 +1	• $(3x+1)^{-\frac{1}{2}}$
•1 pd : express in standard form	$\bullet^2 \frac{1}{\frac{1}{2}} (3x+1)^{\frac{1}{2}}$
• ² pd : integrate	$\frac{1}{2}$ • ³ × $\frac{1}{3}$
• ³ pd : integrate	
•4 ic : substitute the limits	• ⁴ $\left[\frac{2}{3}(3\times 1+1)^{\frac{1}{2}}\right] - \left[\frac{2}{3}(3\times 0+1)^{\frac{1}{2}}\right]$
• ⁵ pd : evaluate	• ⁵ 2/3
Ormetica 10 10	
Question 10 +2	• hypot = $\sqrt{80}$
al and a coloriate hour of	• ² $\sin(p) = \frac{4}{\sqrt{80}}$ and $\cos(p) = \frac{8}{\sqrt{80}}$
 ¹ pd : calculate hypotenuse ² pd : calculate sinp and cosp 	• $\sin(2p) = 2\sin(p)\cos(p)$
 ^{•2} pd : calculate sinp and cosp •³ ss : use double angle formula 	• $\sin(2p) = 2\sin(p)\cos(p)$ • $\sin(2p) = \frac{4}{5}$
 ⁴ pd : process sin2p 	• $\sin(2p) = \frac{1}{5}$ • $\cos(2p) = 2\cos^2(p) - 1$
• put: process shizp •5 ss : use double formula	• $\cos(2p) = 2\cos(p) - 1$ • $\cos(2p) = \frac{3}{5}$
 ⁶ pd : process cos2p 	$-\cos(2p)=\frac{1}{5}$
1 · · · FF	• ⁷ gradient = $tan(2p)$
• ⁷ ic: relate gradient and tan	• gradient = $\tan(2p)$ • ⁸ $\frac{4}{3}$
• ⁸ pd : process	- 3
Question 11 +1	
Question 11 +1	• ¹ $A = (12, -5)$
•1 ic : interpret centre	• $A = (12, -5)$ • ² $OA = 13$
• ² pd : use Pythagoras	
• ³ ic : interpret radius	• $r_B = 8$
•4 ic : interpret centre	• $B = (24, 0)$
• ⁵ ic : state equ of circle	• $(x-24)^2 + y^2 = 64$
• 6 ic : interpret B and q	• $q = -24$
•7 ss : strategy for p	• ⁷ substitute (12, –5)
• ⁸ pd : process	$\bullet^{B} p = \frac{S}{144}$
Increase in marks for Paper 1 = 9 Increase in marks for Paper 2 = 11 Total increase in marks = 20.	
For 2004 the marks will allocated as	follows:
Paper 1 60 Paper 2 70	
Paper 2 70 Total 130	
101a1 130	

[END OF MARKING INSTRUCTIONS]

- Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
- 2. Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
- 3. The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made. This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.
- 4. Correct working should be ticked (✓). This is essential for later stages of the SQA procedures. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick (✓). In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted or wavy line. Work which is correct but inadequate to score any marks should be corrected with a double cross tick (X).
- 5. The total mark for each section of a question should be entered in red in the **outer** right hand margin, opposite the end of the working concerned.
 - Only the mark should be written, not a fraction of the possible marks.
 - These marks should correspond to those on the question paper and these instructions.
- 6. It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer.

- 7. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Accept answers arrived at by inspection or mentally where it is possible for the answer so to have been obtained. Situations where you may accept such working will be indicated in the marking instructions.
- cont/

Mathematics Higher: Instructions to Markers

- 8. Do not penalise:
 - working subsequent to a correct answer
 - omission of units
 - bad form
 - legitimate variations in numerical answers
 - correct working in the "wrong" part of a question
- 9. No piece of work should be scored through even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
- 10. If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
- 11. In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referal to the P.A. Please see the general instructions for P.A. referrals.
- 12. No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.
- 13 **Do not write any comments on the scripts**. A summary of acceptable notation is given on page 4.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:

- 1 Tick correct working.
- 2 Put a mark in the right-hand margin to match the marks allocations on the question paper.
- 3 Do not write marks as fractions.
- 4 Put each mark at the end of the candidate's response to the question.
- 5 Follow through errors to see if candidates can score marks subsequent to the error.
- 6 Do not write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Signs ✓	The tick. You are not expected to tick every line but of course you must check through the whole of a response.	Marks being allotted normally be shown or $\frac{dy}{dx} = 4x - 7$	
×	The cross and underline. Underline an error and place a cross at the end of the line.	$4x - 7 = 0 \qquad X$ $x = \frac{7}{4}$ $y = 3\frac{7}{8} \qquad X$	• 2
×	The tick-cross. Use this to show correct work where you are following through subsequent to an error.	$C = (1, -1) \times m = \frac{3 - (-1)}{4 - 1} m_{rad} = \frac{4}{3} \times m_{rad}$	
*	The double cross-tick. Use this to show correct work but which is inadequate to score any marks.	$m_{igt} = \frac{-1}{\frac{4}{3}}$ $m_{igt} = -\frac{-3}{4}$ $y - 3 = -\frac{3}{4}(x - 2)$	 follow through 3
^	The roof. Use this to show something is missing such as a crucial step in a proof or a 'condition' etc.	$x^2 - 3x = 28 \qquad \checkmark$ $x = 7 \qquad \bigstar$	•
\sim	The tilde. Use this to indicate a minor transgression which is not being penalised (such as bad form).	$\sin(x) = 0.75 = inv\sin(0.75)$)=48.6° • 1
E	Eased. Where working is found correct whilst following through subsequent to an error, the working has been eased sufficiently for a mark not to be awarded.	$log_{3}(x-2) = 1 \qquad \qquad$	• E 1
BOD	Benefit of Doubt. Use this where you have to decide between two consecutive marks and award the higher.		
All of the	se are to help us he more consistent and accurate		

All of these are to help us be more consistent and accurate.

It goes without saying that however accurate you are in marking, it is to no avail unless you have added the marks up correctly. Please double check totals!!

- Mathematics H 2003 Paper 2 Marking Scheme : FINAL

<u></u>		Mathematics H 2003 Paper 2 Marking Scheme : FINAL
	Give 1 mark for each •	Illustrations for awarding each •
10	Solve the equation $3\cos(2x) + 10\cos(x) - 1$	= 0 for $0 \le x \le \pi$, correct to 2 decimal places. 5
10	2.3.1 Ca BA 03/106 ans: 1.23 radians 5 marks •1 ss : know to use double angle formula •2 pd : arrange in standard form •3 ss : know how to solve •4 pd : solve •5 pd : solve	• $3(2\cos^2(x)-1)$ • $6\cos^2(x)+10\cos(x)-4=0$ • $2(3\cos(x)-1)(\cos(x)+2)$ • $\cos(x)=\frac{1}{3}$ and $\cos(x)=-2$ • $x=1.23$ and no solution
	Example 1 $ \begin{array}{c} 6\cos^{2}(x)+10\cos(x)-2=0 & \bullet 1 \times \\ eading to & \bullet 2 \times \\ \cos(x)=0.180 or \ \cos(x)=-1.84 & \bullet 4 \times \\ x=1.39 radians no solution & \bullet 5 \times \\ & 4 \text{mark} \\ & \text{given} \\ \end{array} $	Notes 1 alternative for •3 • ³ $\cos(x) = \frac{-10 \pm \sqrt{10^2 - 4 \times 6 \times (-4)}}{2 \times 6}$ 2 •5 must include some indication that $\cos(x) = -2$ has no solutions. 3 in the event of other substitutions being used for $\cos(2x)$, no credit can be given until the equation reduces to a quadratic in $\cos(x)$. 4 •4 and •5 are only available as a consequence of solving a quadratic equation. 5 •4 and •5 may also be marked as follows • ⁴ $\cos(x) = \frac{1}{3}$ and $x = 1.23$ • ⁵ $\cos(x) = -2$ and no solution 6 For •5, accept $\frac{70.5\pi}{180}$ in lieu of 1.23 7 If an answer starts $3 \times 2 \cos^2(x) - 1 + 10 \cos(x) - 1 = 0$ $6 \cos^2(x) + 10 \cos(x) - 4 = 0$
		then treat the first line as bad form. If an answer starts $3 \times 2 \cos^2(x) - 1 + 10 \cos(x) - 1 = 0$ $6 \cos^2(x) + 10 \cos(x) - 2 = 0$ then use Example 1.

Give I mark for each • Illustrations for awarding each • 1 After a leaflet drop advertising a new garden centre, a random sample of households were surveyed. The results are summarised in the following table. isurveyed. The results are summarised in the following table. (a) Find (i) P(leaflet read) (ii) P(leaflet read and garden centre visited). (b) Comment on whether the proportion who had visited the garden centre was the same whether or not they had read the leaflet. 51 4.1.1, 4.1.3 (i) N CA 03/new (a) ans: $\frac{10}{25}$, $\frac{10}{25}$ (i) ans: $\frac{10}{25}$, $\frac{10}{25}$ (ii) ans: $\frac{10}{25}$, $\frac{10}{25}$ (iii) ans: $\frac{10}{25}$, $\frac{10}{25}$ (iii) P(leaflet read) (iii) P(leaflet read) (iiii) P(leaflet read) (iiiii) P(leaflet read) (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii						
surveyed. The results are summarised in the following table.						
Read the leaflet Did not read the leaflet Visited the centre 80 20 Did not visit the centre 60 40 (a) Find (i) P(leaflet read) 2 (ii) P(leaflet read and garden centre visited). 2 (b) Comment on whether the proportion who had visited the garden centre was the same whether or not they had read the leaflet. 3 Si 4.1.1, 4.1.3 CN CA 03/new (a) ans: if any match and its interpret table -1 -1 ic: interpret table -2 -2 -2 -2 -3 ic: interpret table -2 -4 ic: interpret table -2 -5 ic: comment 3 -6 2 -2 -7 2 -2 -8 2 -2 -9 2 -2 -9 2 -2 -9 2 -0.37 -9 2 -2 -9 2 -2 -9 2 -2 -9 2 -2 -9 2 -2	1	After a leaflet o	drop advertising a new ga	rden centre, a rand	om sample of households w	vere
Visited the centre 80 20 Did not visit the centre 60 40 (a) Find (i) P(leaflet read) 2 (ii) P(leaflet read and garden centre visited). (b) Comment on whether the proportion who had visited the garden centre was the same whether or not they had read the leaflet. 3 51 4.11,4.1.3 CN CA 03/new • • (a) ans: 2 • • • 1 is: interpret table • • • 2 is: interpret table • • • 1 is: interpret table • • • 2 is: interpret sample • • • 1 is: interpret sample • • • 2 is: interpret sample • • • 2 is: interpret sample • • • 3 is: interpret sample • • • 5 is: interpret sample • > • 6		surveyed. The	results are summarised in	the following table	2.	
Did not visit the centre 60 40 (a) Find (i) P(leaflet read) 2 (ii) P(leaflet read) and garden centre visited). (b) Comment on whether the proportion who had visited the garden centre was the same whether or not they had read the leaflet. 3 S1 4.11,4.1.3 CN CA 03/new (a) ans: %, % 2 marks (b) ans: comment 3 marks • 1 % •1 ic: interpret table • 2 % •2 ic: interpret table • 2 % •3 ic: interpret sample • 4 % •5 ic: comment • 2 % • 1 %: comment • 3 %				Read the leaflet	Did not read the leaflet	
(a) Find (i) P(leaflet read) 2 (ii) P(leaflet read) and garden centre visited). (b) Comment on whether the proportion who had visited the garden centre was the same whether or not they had read the leaflet. 3 S1 4.1.1, 4.1.3 CN CA 03/new (a) ans: $\frac{10}{20}$, $\frac{20}{20}$ (b) ans: comment 3 marks ¹ is: interpret table ² is: interpret table ³ is: interpret table ⁴ $\frac{110}{10}$ ⁴ $\frac{110}{10}$ ⁵ is: comment ⁵ is: comment ⁶ $\frac{110}{10}$ ⁶ $\frac{110}{10}$ ⁷ $\frac{110}{10}$ ⁸ $\frac{100}{10}$ ⁹ $\frac{110}{10}$ ⁹ $\frac{110}{10}$<!--</th--><th></th><th></th><th>Visited the centre</th><th>80</th><th>20</th><th></th>			Visited the centre	80	20	
(i) P(leaflet read and garden centre visited). (b) Comment on whether the proportion who had visited the garden centre was the same whether or not they had read the leaflet. 51 4.11, 4.1.3 CN CA 03/new (a) ans: 卷, 卷 2 marks •1 ic: interpret table •2 卷 •2 ic: interpret table •2 卷 •3 ic: interpret sample •2 卷 •4 ic: interpret sample •2 卷 •5 ic: comment •3 as not the same •5 ic: comment •3 as mets •5 ic: comment •4 as one effect			Did not visit the centre	60	40	
(i) P(leaflet read and garden centre visited). (b) Comment on whether the proportion who had visited the garden centre was the same whether or not they had read the leaflet. 51 4.11, 4.1.3 CN CA 03/new (a) ans: 卷, 卷 2 marks •1 ic: interpret table •2 卷 •2 ic: interpret table •2 卷 •3 ic: interpret sample •2 卷 •4 ic: interpret sample •2 卷 •5 ic: comment •3 as not the same •5 ic: comment •3 as mets •5 ic: comment •4 as one effect		(a) Eind (i)	D(looflat road)		1	-
(b) Comment on whether the proportion who had visited the garden centre was the same whether or not they had read the leaflet. 3 S1 4.1.1, 4.1.3 CN CA 03/new (a) ans: ₩0. № 2 marks (b) ans: comment 3 marks ic: interpret table ic: interpret table ic: interpret sample ic: interpret sample ic: comment ic: comment ic: comment ic: interpret sample ic: comment ic: co				dan cantra visitad)		2
S1 4.1.1, 4.1.3 CN CA 03/new (a) ans: ½, ½ 2 marks 2 marks (b) ans: comment 3 marks 2 -1 ic: interpret table -2 -2 ic: interpret table -2 -3 ic: interpret sample -3 -4 ic: interpret sample -3 -5 ic: comment -4 -5 ic: comment -4 -6 ic: interpret sample -5 -5 ic: comment -4 -6 ic: interpret sample -5 -7 ic: interpret sample -5 -8 ic: comment -4 -7 ic: comment -5 -8 ic: comment -6 -7 ic: interpret sample -7 -8 ic: comment -7 -9						same
S1 4.1.1, 4.1.3 CN CA 03/new (a) ans: $\frac{100}{200}$, $\frac{200}{200}$ 2 marks • $\frac{1}{100}$ • 1 ic: interpret table • $\frac{1}{100}$ • $\frac{1}{100}$ • 2 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample • $\frac{1}{100}$ • $\frac{1}{100}$ • 1 ic: interpret sample					a the gurden centre was the	5 June 3
(a) ans: 操, 资 2 marks * 1 ic: interpret table 3 marks * 2 ic: interpret table * * 3 ic: interpret tample * * 4 ic: interpret sample * * 5 ic: comment * * 5 ic: comment * * 6 ic: interpret sample * * 7 ic: comment * * 6 ic: interpret sample * * 7 ic: comment * * 6 ic: comment * * 7 ic: comment * * 7 ic: comment * * 7 ic: comment *	4					
(b) ans : comment 3 marks • 1 ic : interpret table • 2 model • 2 ic : interpret sample • 3 model • 4 ic : interpret sample • 3 model • 5 ic : comment • 3 model • 5 ic : comment • 3 model • 6 model • 3 model • 7 model • 3 model • 6 model • 3 model • 7 model • 3 model • 6 model • 3 model • 7 model • 3 model • 7 model • 3 model • 8 model • 4 model • 9 model • 9 model • 9 model • 9 model • 1 model • 1 model • 2 model • 1 model • 1 model • 1 model • 2 model • 1 model • 1 model	S1					
•1 ic: interpret table •2 800 •2 ic: interpret sample •3 ic: interpret sample •4 ic: interpret sample •5 ic: comment •5 ic: comment •6 seems that the leaflet •6 seems that the leaflet •6 seems that the leaflet •7 ic: interpret sample •6 seems that the leaflet •6 seems that the leaflet •6 seems that the leaflet •7 ic: comment •7 seems that the leaflet •8 seems that the leaflet •6 seems that the leaflet •9 seems that the leaflet •6 seems that the leaflet •1 ic: comment •7 seems that the leaflet •1 ic: comment •8 seems that the leaflet •1 ic: comment •1 ic: comment				• ¹ <u>140</u>		
• ² ic : interpret table • ³ $\frac{16}{10} = 0.57$ • ⁴ ic : interpret sample • ⁵ $\frac{16}{20} = 0.33$ & not the same • ⁵ ic : comment • ⁸ $\frac{16}{20} = 0.33$ & not the same						
• ⁴ ic : interpret sample • ⁵ ic : comment • ⁵ ic : comment • ⁶ seems that the leaflet had some effect		• ² ic : interpret	t table		= 0.57	
• ⁵ ic : comment had some effect		• ³ ic : interpret	sample			
		• ⁵ ic : commen	t sample			
				nac	some enect	
17						
17						
17						
17						
17						
17						
17						
17						
17						
17						
17						
17						
	L			- 17		

Give 1 mark for each •	Illustrations for awarding each •
Additional marks in Paper 2	
Auunonai marks în raper 2	
Question 1 +1 •1 ss: know to evaluate $f(2)$ •2 pd: evaluate $f(2)$ and complete proof •3 ss: synthetic division or long division •4 ic: state quadratic factor •5 pd: factorise fully Question 2 +3 •1 ic: interpret amplitude •2 ic: explanation •5 ic: interpret period •4 ic: explanation •5 ic: interpret vertical displacement	• $f(2) = 6 \times 2^3 \dots$ • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 - 34 - 20 - 34 - 34 - 20 - 34 - 34 - 34 - 34 - 34 - 34 - 34 - 3$
• ⁶ ic : explanation	• ⁶ half way between $y = 5$ and $y = -3$
Question 3 +1 •1 ss : area= \int upper function – lower function •2 ic : interpret diagram for limits •3 pd : simplify prior to integration •4 pd : integrate •5 ic : interpret the limits •6 pd : evaluate using limits	• $\int \left(\left(x^2 + 2x \right) - \left(x^3 - x^2 - 6x \right) \right) dx$ stated, or implied by • $\int_{0}^{2} \int_{0}^{4} \dots + \int_{0}^{3} \left[\left(8x + 2x^2 - x^3 \right) dx + \left[4x^2 + \frac{2}{3}x^3 - \frac{1}{4}x^4 \right]_{0}^{4} \right] dx$ • $\left[4x^2 + \frac{2}{3}x^3 - \frac{1}{4}x^4 \right]_{0}^{4}$ • $\left[4x^2 + \frac{2}{3} \times 4^3 - \frac{1}{4} \times 4^4 \right] - 0$ • $\left[42\frac{2}{3} \right]$
Question 4 +1	
 •1 ss : know to differentiate •2 pd : differentiate •3 pd : differentiate •4 pd : evaluate gradient •5 pd : evaluate y-coordinate •6 ic : state equation of line 	•1 $\frac{dy}{dx} =$ •2 $any 2 terms from 3x^2 + 4x - 3$ •3 $\frac{dy}{dx} = 3x^2 + 4x - 3$ •4 $m = \frac{dy}{dx_{x-1}} = 4$ gradient stated or implied by •4 •5 $y_{x-1} = 2$ •6 $y - 2 = 4(x - 1)$
Question 5 +1	
 ¹ ic : interpret f(-x) ² ic : communication ³ ic : communication 	 ¹ refl. in <i>y</i> – axis ² annotate any two from (0,-3), (4,2), (3,0), (-1,0) ³ annotate remaining two

Give 1 mark for each •	Illustrations for awarding each •
Question 6 +1	
•1 pd : differentiate compound trig	• ¹ $f'(x) = -2\sin(2x) + \dots$
• ² pd : differentiate compound trig	\bullet^2 12 cos(4x)
• ³ ic : interpret	• $f'(\frac{\pi}{\delta}) = -2\sin(\frac{2\pi}{\delta}) - 12\cos(\frac{4\pi}{\delta})$
•4 pd : evaluate derivative	
• ⁵ pd : evaluate derivative	$\bullet^4 -2\sin(\frac{2\pi}{6}) = -\sqrt{3}$
	$\bullet^5 -12\cos\left(\frac{4\pi}{6}\right) = 6$
Question 8 +2	
• ¹ ss : identify crucial aspect	• 1 length = $\frac{108000}{\frac{1}{2}x^{2}}$
• ² ic : start proof	-
• ³ ic : complete proof	• ² $SA = 2 \times \frac{1}{2}x^2 + 2x \times length$
•4 ss : know to differentiate	• ³ $SA = x^2 + \frac{432000}{x}$
• ⁵ ss : know to set derivative to zero	
• ⁶ pd : express in standard form	$\bullet^5 \frac{dA}{dx} = 0$
• ⁷ pd : differentiate	• $432000 x^{-1}$
• ⁸ pd : start to solve	x^{-7} 2x-432000x ⁻²
• ⁹ pd : solve	• ⁸ $2x = \frac{432000}{x^2}$
• ¹⁰ ic : justify minimum	$2x = \frac{1}{x^2}$
	• ⁹ $x = 60$
	• ¹⁰ <i>e.g.</i> nature table
Question 9+1•1ss : use distributive law•2pd : expand scalar product•3pd : expand scalar product•4ic : substitution•5pd : complete calculations	• ¹ $a.(a+b) = a.a + a.b$ • ² $a.b = 5 \times 4 \cos(\theta)$ • ³ $a.a = 5^2$ • ⁴ $20 \cos(\theta) = 11$ • ⁵ $\theta = 56.6^{\circ}$
Increase in marks for Paper 1 = 9 Increase in marks for Paper 2 = 11 Total increase in marks = 20. For 2004 the marks will allocated as f Paper 1 60 Paper 2 70 Total 130	ollows:

[END OF MARKING INSTRUCTIONS]