

2008 Mathematics

Intermediate 1 Units 1, 2 & Applications Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2008

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Mathematics Intermediate 1: Paper 1, Units 1, 2 and Applications

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
1 (a)	Ans: 2·368 • 1 process: calculate 2·658 - 0·29	•¹ 2·368 1 mark
(b)	Ans: 42000 •¹ process: calculate 14×3000	•¹ 42000 1 mark
(c)	Ans: 1.09 •¹ process: calculate 5.45 ÷ 5	•¹ 1·09 1 mark
	T	T
2	Ans: 8 hours 40 minutes • 1 process: calculate number of hours and minutes from 2235 to 0715	•¹ 8 hours 40 minutes 1 mark
NOTES: 1. 4	Accept 8:40	
3 (a)	Ans: 559 •¹ interpret/process: evaluate formula	•¹ 559 1 mark
(b)	Ans: = AVERAGE(B3E3) •¹ communicate: state formula	•¹ AVERAGE(B3E3) or equivalent 1 mark
2. 4 3. 4 4. I	Accept abbreviations for AVERAGE eg AV($(3)/4 \text{ (must be / not } \div \text{)}$

Question No	Marking Scheme Give 1 mark for each ●	Illustrations of evidence for awarding a mark at each ●
4	Ans: £116	
	•¹ strategy: correct method	• $1 20 + 12 \times $ (no. of 15 minute slots)
	• process: carry out calculations correctly	• ² 116 2 marks

1. Correct answer without working

award 2/2

- 2. Some common answers (no working necessary)
 - (a) $256 [(20+12)\times 8]$

award 1/2

(b) 96 [12×8]

award 1/2

- 3. Award of 2nd mark
 - (a) 2nd mark is available for correctly calculating the answer to 20 + 12×(number of 15 minute slots) where **working** shows candidate has **calculated** "number of 15 minute slots" incorrectly.
 - (b) where there is no working to support an incorrect number of 15 minute slots the 2nd mark is **only** available for (working must be shown)
 - (i) $20 + 12 \times 4 = 68$
 - (ii) $20 + 12 \times 120 = 1460$

award $1/2 \times \sqrt{}$

- (iii) $20 + 15 \times 8 = 140$
- (c) (i) $20 + 12 \times 2 = 44$ (ii) $20 + 12 \times 15 = 200$ award 0/2

Question No	Marking Scheme Give 1 mark for each ●	Illustrations of evidence for awarding a mark at each ●
5 (a)	Ans: $\frac{7}{70}$ • process: find probability	• $\frac{1}{7_{70}}$ or equivalent 1 mark

- 1. Accept 7:70, 7 out of 70, 7 in 70, 7-70, 1/10, 0.1, 10%
- 2. Do not penalise subsequent incorrect cancelling

5 (b)	Ans: 2·1			
	•¹ communicate/process: complete table	•¹ 33 32 25 147		
	• strategy: know to divide Σfx by 70	$\bullet^2 147 \div 70$		
	• 3 process: correctly divide Σ fx	•3 2·1		
		3 marks		

1. Final answer Criteria for
$$1^{\underline{st}}$$
 mark met $2 \cdot 1$ 3/3 2/3 2/3 1/3

- 2. Award of 1st mark
 - 33, 32, 25 and 147 need not appear in table but must be shown in working
- 3. (a) 3^{rd} mark may only be awarded where answer to division is given to one or more decimal places (accept rounding or truncation) e.g. $147 \div 5 = 29 \cdot 4$, $146 \div 70 = 2 \cdot 0$... or $2 \cdot 1$
 - (b) Do not award 3^{rd} mark where working is eased e.g. $147 \div 7 = 21$

Question No	Marking Scheme Give 1 mark for each ●	Illustrations of evidence for awarding a mark at each ●
6	Ans: see below	
	• interpret: interpret information	•¹ one correct column
	• strategy: find some possibilities	• another two correct columns
	• strategy: find all possibilities	• final two correct columns
		3 marks

Dinner and Cabaret – £55	55	55	55		
Pirate Cruise – £40	40			40	
Volcano Trip – £35		35	35		35
Caves and Grottos – £30		30		30	30
Parrots and Dolphins – £25	25		25	25	25
Reps' Show - £20 or Free	Free	Free	Free	20	20
Total Price	120	120	115	115	110

1. A correct column must have 4 valid entries and a correct total.

2. Where there are missing or incorrect totals a maximum of 2 marks is available

(a) 5 columns otherwise "correct"

award 2/3

(b) 2 columns otherwise "correct"

award 1/3

3. If ticks are used totals must be shown

Dinner and Cabaret – £55	√	√	√		
Pirate Cruise – £40	√			1	
Volcano Trip – £35		1	1		1
Caves and Grottos – £30		1		√	1
Parrots and Dolphins - £25	√		1	1	√
Reps' Show - £20 or Free	√	√	1	√	√
Total Price	120	120	115	115	110

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each ●
7	Ans: boxplot	
	•¹ process: arrange numbers in order	•¹ 13 14 16 16 17 17 18 19 20 20 23 24 25
	•² interpret: minimum	•² 13
	•³ interpret: median	•3 18
	• ⁴ interpret: upper quartile	•4 21·5 4 marks

- 1. Correctly completed boxplot (no working necessary) award 4/4
- 2. If any of min, Q_2 or Q_3 is not shown on boxplot a maximum of 3/4 is available
- 3. Ordered list with one missing or one extra number Working should be followed through with the possibility of awarding 3/4
- 4. Where there is no working:
 - award 2/4
 - (a) any two of min=13, $Q_2 = 18$, $Q_3 = 21.5$ shown on boxplot (b) any one of min=13, $Q_2 = 18$, $Q_3 = 21.5$ shown on boxplot award 1/4
- 5. Where the list is not ordered

min=13, Q_2 =16, Q_3 =16 shown on boxplot

6. If Q₂ is incorrect working should be followed through with the possibility of awarding the 4th mark

Question No	Marking Scheme Give 1 mark for each ●	Illustrations of evidence for awarding a mark at each ●
8	Ans: 1750 metres, 310°	
	•¹ strategy/process: correctly measure distance	•¹ 7 (±0·2cm)
	• strategy/process: correctly multiply measured distance by 250	\bullet^2 $7 \times 250 = 1750$
	•³•⁴ strategy/process: find bearing	$\bullet^3 \bullet^4$ 310 (±2) [award 1 for 50(±2) or 130(±2)]
		4 marks

- 1. Where there is no working the only other acceptable answers for the award of first 2 marks are $1700 \ (6.8 \times 250)$, $1725 \ (6.9 \times 250)$, $1775 \ (7.1 \times 250)$, $1800 \ (7.2 \times 250)$
- 2. The first 2 marks are not available for correctly multiplying an angle by 250. Assume that 40, 50, 130, 310 are angles unless there is clear evidence to suggest otherwise.

9	Ans: -9	
	•¹ •² interpret/process: square -8 correctly •³ interpret/process: subtract 73 correctly	• 1 • 2 64 (award 1 for $-8^{2} = -64$ or $8^{2} = \pm 64$ or -8×-8) • 3 -9
		3 marks

- 1. Be aware !!!
 - (a) -9 with no working award $2/3 \times \sqrt{1}$ (b) $8^2 - 73 = 64 - 73 = -9$ award $2/3 \times \sqrt{1}$ (c) 64 - 73 = -9 award $3/3 \times \sqrt{1}$ (d) $-8^2 - 73 = -9$ award $3/3 \times \sqrt{1}$
- 2. Some common answers:
 - (a) $-8^2 73 = -64 73 = -137$ award $2/3 \times \sqrt{\sqrt{ }}$ (b) $-8^2 - 73 = 16 - 73 = -57$ award $1/3 \times \sqrt{ }$ (c) $-8^2 - 73 = -16 - 73 = -89$ award $1/3 \times \sqrt{ }$

Question No		Marking Scheme Give 1 mark for each ●			nstrations of evidence for awarding a mark at each ●
10	Ans: £18				
	•1	strategy:	know how to calculate annual interest	•1	1440 ÷ 10 ÷ 2 or equivalent
	•2	process:	calculate 5% of 1440	•2	72
	•3	strategy:	know how to calculate interest for 3 months	•3	$72 \div 12 \times 3$ or equivalent (or $72 \div 12 = 6$)
	•4	process:	calculate $72 \div 12 \times 3$	•4	18 4 marks

- 1. Some common answers (no working necessary)
 - (a) 18 (correct answer)

award 4/4

(b) 72 (annual interest)

award $2/4 \sqrt{1} \sqrt{1}$

2. Some common answers (working must be shown)

(a) $1440 \times {}^{5}/_{100}$

award $1/4 \quad \sqrt{\times \times}$

(b) $288 [72 \times 12 \div 3]$

award $3/4 \quad \sqrt{\sqrt{\times}}$

(c) $288 [1440 \div 5]$

award 0/4

(d) 216 $[72 \times 12 \div 4 \text{ or } 72 \times 3]$

award $2/4 \sqrt{1} \times \times$ award $2/4 \quad \sqrt{\sqrt{\times}}$

- (e) 24 $[72 \div 3]$
- 3. 1458 (1440 + 18)

award 4/4

(a) if the candidate **states** that the interest is 18 (b) otherwise (no working necessary)

award $3/4 \sqrt{1}$

- 4. Award of 3rd mark: accept 72÷10÷ 2 as evidence of attempt to calculate 72÷12 e.g. $72 \div 10 \div 2 \times 3 = 10.8(0)$ award $3/4 \sqrt{1}$
- 5. Alternative strategies

(a) 18 $[5 \div 12 \times 3 = 1.25 \rightarrow 1440 \div 100 \times 1.25]$

award 4/4

(b) 0.41... or 0.42 $[5 \div 12]$ (working must be shown) award 1/4

(c) $18 \quad [1440 \div 12 \times 3 = 360 \div 10 \div 2]$

award 4/4

(d) 120 [1440 ÷12] (working must be shown)

award 1/4

TOTAL MARKS FOR PAPER 1

30

2008 Mathematics

Intermediate 1 – Units 1, 2 & Applications Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2008

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Mathematics Intermediate 1: Paper 2, Units 1, 2 and Applications

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awardin a mark at each •		
1 (a)	Ans: diagram • communicate: plot point • communicate: plot points	• 1 plot A or B or C • 2 plot other two points 2 marks		
(b)	Ans: D(3,2) plotted •¹ strategy: plot 4 th vertex of square	•¹ plot(3,2) 1 mark		

- 1. Accept (3,2) if D not plotted
- 2. If D(3,2) is plotted but wrong coordinates are stated then award 1/1
- Where (y,x) is consistently plotted
 award 1/2 for (a)
 award 1/1 for (b) for plott

 - award 1/1 for (b) for plotting 4th vertex of square

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
2 (a)	Ans: £841	
	•¹ interpret: find basic premium	•¹ 841 1 mark

1. Working subsequent to "correct" answer e.g. $841 \div 12 = 70.08$ award 0/1

2 (b)	Ans: £277·53			
	•¹ interpret/strategy/process: find discount	•1	$\frac{67}{100} \times 841 = 563 \cdot 47$	
	•² strategy/process: find net premium	•2	277-53	2 marks

NOTES:

1. Some common answers

	with working	without working
(a) 277·53	2/2	2/2
(b) 563.47	1/2	1/2
(c) 277·50 (841 – 563·50)	1/2	1/2
(d) 278 (841 – 563)	1/2	1/2
(e) 563·50, 563	see note 2	0/2

2.

(i)
$$^{67}/_{100} \times 841 = 563.47 = 563.50$$
 or 563 award 1^{st} mark (ii) $^{67}/_{100} \times 841 = 563.50$ or 563 do **not** award 1^{st} mark

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
3	Ans: £928.80	
	•¹ interpret: find basic cost per room per night	•1 43
	•² interpret/process: find total basic cost	• ² 1032
	•³ interpret/process: find total cost	• ³ 928·8(0) 3 marks

- 1. Correct answer without working award 3/3
- 2. Some common answers (no working necessary)

```
232 \cdot 2(0) [43 × 6 × 0·9]
                                                           award 2/3
                                                                               \checkmark \times \checkmark
(b)
         154.8(0)
                        [43 \times 4 \times 0.9]
                                                           award 2/3
                                                                               \checkmark \times \checkmark
         38.7(0)
                          [43 \times 0.9]
                                                           award 2/3
(c)
(d)
          258
                          [43 \times 6]
                                                           award 1/3
         172
                          [43 \times 4]
                                                           award 1/3
                                                                              \checkmark \times \times
(e)
         1036.8(0) [48 × 6 × 4 × 0.9]
(f)
                                                           award 2/3
                                                                              \times \checkmark \checkmark
         1152
                         [48 \times 6 \times 4]
                                                            award 1/3
(g)
(h)
         43 \cdot 2(0) [48 \times 0.9]
                                                            award 1/3
                                                                              ××√
                                                                               \times \checkmark \checkmark
(i)
         1123 \cdot 2(0) \quad [52 \times 6 \times 4 \times 0.9]
                                                            award 2/3
        1248
                         [52 \times 6 \times 4]
                                                            award 1/3
                                                                              \times \checkmark \times
(j)
         46.8(0)
                        [52 \times 0.9]
                                                            award 1/3
                                                                              ××√
(k)
```

- 3. Some common answers (working must be shown)
 - (a) 387 $[((43\times6) + (43\times4))\times0.9]$ award 2/3 $\checkmark\times\checkmark$ (b) 430 $[(43\times6) + (43\times4)]$ award 1/3 $\checkmark\times\times$ (c) 296·7(0) $[(43\times6) + (43\times0.9)]$ award 1/3 $\checkmark\times\times$

Question	Marking Scheme		llustrations of evidence for awarding
No	Give 1 mark for each	h •	a mark at each ●
4 (a)	Ans: 2.5		
	•¹ strategy: know to order nu	mbers •¹	1 1 1 2 2 3 3 4 6 7
	• ² process: find median	•2	2.5
	•		2 marks
NOTES:			
1. <u>/</u>		alid working	without valid working
	2·5 4 (numbers not ordered)	2/2 1/2	2/2 0/2
	3 (mean)	1/2	0/2
	f "correct" median is found from or	dered list with one	missing (or one extra) award 1/2
I	lumber		award 1/2
3. A	accept ordered list written in part (a)	or part (b)	
4 (b)	Ans: 6		
` ,			
	•¹ strategy/process: find rang	ge •¹	6 1 mark
NOTES:			
NOTES:			
4 (c)	Ans: Less weeds remain with N Number of remaining we more with Noweed.		
		erpret lculated titistics	Less weeds remain with Noweed or Noweed is a better weedkiller, etc.
	cal	erpret lculated utistics	Number of remaining weeds vary more with Noweed.
			2 marks
NOTES:	I		
1. A	answer must be consistent with answ	wers to parts (a) and	l (b)
	On not accept		
2. I	Oo not accept eg Weedclear's median is more		

No		Marking Scheme ve 1 mark for each	•	Illustrations of evidence for av a mark at each •	warding
5	Ans: 36 mph				
	•¹ strategy/p	rocess: calculate dis motorway	stance on	$\bullet^1 \qquad 2 \times 68 = 136$	
	•² strategy/p	rocess: find distanc roads	e on other	\bullet^2 D = 54	
		know how to find sp other roads	peed on	$\bullet^3 \qquad S = 54 \div 1h \ 30m$	
	• ⁴ process:	calculate speed		$\bullet^4 54 \div 1.5 = 36$	
					4 marks
NOTES:	marriana resith out y				
(answers without value of the same of the s	working award 4/4 award 1/4		«×	
2. F	or a final answe	r of 54			
	a) 54 [190 – 1		1 🗸	××	
`	-	90 ÷ 3·5] award 1/4		<√	
		J			
(c) 54 with no	working award 1/4			
`	*		ļ ××:		
3. E	Examples of answ	vers (working must b	e shown)	<√	
3. E	Examples of answ) 42, 41(·)	vers (working must b	e shown)		
3. E	Examples of answ) 42, 41(·)) 0·6	vers (working must b	e shown) 3/4 (disreg	gard incorrect rounding)	
3. E (a (b	Examples of answ) 42, 41(·)) 0·6) 0·4	wers (working must b [54 ÷ 1·3] [54 ÷ 90] [54 ÷ 130]	the shown) 3/4 (disregard)	gard incorrect rounding) $\checkmark\checkmark\checkmark\times$	
3. E (a) (b) (c) (d)	Examples of answ) 42, 41(·)) 0·6) 0·4	vers (working must b [54 ÷ 1·3] [54 ÷ 90]	e shown) 3/4 (disregard) 3/4 3/4	gard incorrect rounding) $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$	
3. E (a) (b) (c) (d) (e)	Examples of answ 1 42, 41(·) 2 0.6 3 0.4 3 81 4860	vers (working must b [54 ÷ 1·3] [54 ÷ 90] [54 ÷ 130] [54 × 1·5] [54 × 90]	e shown) 3/4 (disregard) 3/4 3/4 3/4	gard incorrect rounding) $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$	
3. E (a) (b) (c) (d) (e)	Examples of answ 1 42, 41(·) 2 0.6 3 0.4 3 81 3 4860 4 70(·2)	wers (working must by $[54 \div 1.3]$ $[54 \div 90]$ $[54 \div 130]$ $[54 \times 1.5]$	e shown) 3/4 (disregal/4) 3/4 3/4 2/4	gard incorrect rounding) $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\times$	
3. E (a (b) (c) (d) (e) (f) (g	Examples of answ) 42, 41(·)) 0·6) 0·4) 81) 4860) 70(·2)) 7020	vers (working must by $[54 \div 1.3]$ $[54 \div 90]$ $[54 \div 130]$ $[54 \times 1.5]$ $[54 \times 90]$ $[54 \times 1.3]$ $[54 \times 1.3]$ $[54 \times 130]$	se shown) 3/4 (disregal/4 3/4 3/4 2/4 2/4 2/4	gard incorrect rounding) $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$	
3. E (a) (b) (c) (d) (e) (f) (g)	Examples of answ) 42, 41(·)) 0·6) 0·4) 81) 4860) 70(·2)) 7020 81(·3)) 1·3(5)	vers (working must by $[54 \div 1.3]$ $[54 \div 90]$ $[54 \div 130]$ $[54 \times 1.5]$ $[54 \times 90]$ $[54 \times 1.3]$ $[54 \times 1.3]$ $[54 \times 130]$ $[(190-68)\div 1.5]$ $[(190-68)\div 90]$	e shown) 3/4 (disregal/4 3/4 3/4 2/4 2/4	gard incorrect rounding) $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$	
3. F (a (b) (c) (d (e) (f) (g	Examples of answ) 42, 41(·)) 0·6) 0·4) 81) 4860) 70(·2)) 7020 81(·3)) 1·3(5)	vers (working must by $[54 \div 1.3]$ $[54 \div 90]$ $[54 \div 130]$ $[54 \times 1.5]$ $[54 \times 90]$ $[54 \times 1.3]$ $[54 \times 1.3]$ $[54 \times 130]$ $[(190-68)\div 1.5]$ $[(190-68)\div 90]$	shown) 3/4 (disregally) 3/4 3/4 3/4 2/4 2/4 2/4 3/4	gard incorrect rounding) $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$	
3. E (a) (b) (c) (d) (e) (f) (g)	Examples of answ) 42, 41(·)) 0·6) 0·4) 81) 4860) 70(·2)) 7020 81(·3) 1·3(5) 94, 93(·)	vers (working must b [54 ÷ 1·3] [54 ÷ 90] [54 ÷ 130] [54 × 1·5] [54 × 90] [54 × 1·3] [54 × 130] [(190–68)÷1·5] [(190–68)÷90] [(190–68)÷1·3]	shown) 3/4 (disregally) 3/4 3/4 3/4 3/4 2/4 2/4 3/4 2/4	gard incorrect rounding)	
3. E (a) (b) (c) (d) (e) (f) (g) (i) (k) (l)	Examples of answ) 42, 41(·)) 0·6) 0·4) 81) 4860) 70(·2)) 7020) 81(·3)) 1·3(5)) 94, 93(·)) 1, 0·9()	vers (working must by $[54 \div 1.3]$ $[54 \div 90]$ $[54 \div 130]$ $[54 \times 1.5]$ $[54 \times 90]$ $[54 \times 1.3]$ $[54 \times 1.3]$ $[54 \times 130]$ $[(190-68) \div 1.5]$ $[(190-68) \div 90]$ $[(190-68) \div 1.3]$ $[(190-68) \div 1.3]$ $[(190-68) \div 1.3]$	se shown) 3/4 (disregal/4) 3/4 3/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4	gard incorrect rounding)	
3. E (a) (b) (c) (d) (e) (f) (g) (i) (k)	Examples of answ) 42, 41(·)) 0·6) 0·4) 81) 4860) 70(·2)) 7020) 81(·3)) 1·3(5)) 94, 93(·)) 1, 0·9()	vers (working must b [54 ÷ 1·3] [54 ÷ 90] [54 ÷ 130] [54 × 1·5] [54 × 90] [54 × 1·3] [54 × 130] [(190–68)÷1·5] [(190–68)÷90] [(190–68)÷1·3]	e shown) 3/4 (disregal/4) 3/4 3/4 3/4 2/4 2/4 2/4 2/4 2/4 2/4	gard incorrect rounding) $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\checkmark\times$ $\checkmark\checkmark\times\times$ $\checkmark\checkmark\times\times$ $\checkmark\checkmark\times\times$ $\checkmark\checkmark\times\times$ $\checkmark\checkmark\times\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$ $\checkmark\checkmark\times$	
3. E (a (b) (c) (d (e) (f) (g (i) (k (l)	Examples of answ) 42, 41(·)) 0·6) 0·4) 81) 4860) 70(·2)) 7020) 81(·3)) 1·3(5)) 94, 93(·)) 1, 0·9() a) 183) 10980	vers (working must by $[54 \div 1.3]$ $[54 \div 90]$ $[54 \div 130]$ $[54 \times 1.5]$ $[54 \times 90]$ $[54 \times 1.3]$ $[54 \times 1.3]$ $[54 \times 130]$ $[(190-68) \div 1.5]$ $[(190-68) \div 90]$ $[(190-68) \div 1.3]$ $[(190-68) \div 1.3]$ $[(190-68) \div 1.3]$ $[(190-68) \div 1.5]$	se shown) 3/4 (disregality) 3/4 3/4 3/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4	gard incorrect rounding)	
3. F (a (b) (c) (d (e) (f) (g (i) (j) (k (l)	Examples of answ) 42, 41(·)) 0·6) 0·4) 81) 4860) 70(·2)) 7020 (81(·3)) 1·3(5)) 94, 93(·) 1, 0·9() (1) 183) 10980) 159,158·6	vers (working must by $[54 \div 1.3]$ $[54 \div 90]$ $[54 \div 130]$ $[54 \times 1.5]$ $[54 \times 90]$ $[54 \times 1.3]$ $[54 \times 1.3]$ $[54 \times 130]$ $[(190-68) \div 1.5]$ $[(190-68) \div 90]$ $[(190-68) \div 1.3]$ $[(190-68) \times 1.5]$ $[(190-68) \times 90]$	shown) 3/4 (disregally 3/4 3/4 3/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4 1/4	gard incorrect rounding)	
3. F (a (b) (c) (d (e) (f) (g (i) (j) (k (l) (n) (o	Examples of answ) 42, 41(·)) 0·6) 0·4) 81) 4860) 70(·2)) 7020) 81(·3)) 1·3(5)) 94, 93(·)) 1, 0·9() a) 183) 10980) 159,158·6) 15860	vers (working must b [54 ÷ 1·3] [54 ÷ 90] [54 ÷ 130] [54 × 1·5] [54 × 90] [54 × 1·3] [54 × 130] [(190–68)÷1·5] [(190–68)÷1·3] [(190–68)×1·3] [(190–68)×1·5] [(190–68)×1·5] [(190–68)×1·5] [(190–68)×1·5] [(190–68)×1·3]	shown) 3/4 (disregally 3/4 3/4 3/4 3/4 2/4 2/4 2/4 2/4 2/4 2/4 1/4	gard incorrect rounding)	
3. E (a) (b) (c) (d) (e) (f) (g) (i) (k) (l) (m) (o) (p)	Examples of answ) 42, 41(·)) 0·6) 0·4) 81) 4860) 70(·2)) 7020) 81(·3)) 1·3(5)) 94, 93(·)) 1, 0·9() 1) 183) 10980) 159,158·6) 15860) 91, 90(·)	vers (working must b [54 ÷ 1·3] [54 ÷ 90] [54 ÷ 130] [54 × 1·5] [54 × 90] [54 × 1·3] [54 × 130] [(190–68)÷1·5] [(190–68)÷90] [(190–68)×1·3] [(190–68)×1·5] [(190–68)×1·3] [(190–68)×1·3] [(190–68)×1·3] [(190–68)×1·3] [(190–68)×1·3] [(190–68)×1·3] [(190–68)×1·3] [(190–68)×1·3]	se shown) 3/4 (disregal/4 3/4 3/4 3/4 2/4 2/4 2/4 2/4 2/4 2/4 1/4 1/4 1/4	gard incorrect rounding)	

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
6	Ans: 77	
	•¹ strategy/process: find angle at centre of "beetles" sector	•1 126
	•² strategy: know how to find number of beetles	$\bullet^2 \frac{126}{360} \times 220$
	•³ process: find number of beetles	• ³ 77 3 marks
	Alternative Strategy	
	•¹ strategy: know to calculate 220 – (flies + ants + spiders)	• 1 220 – (flies + ants + spiders)
	• strategy: know how to find number of flies, ants and spiders	•² flies = $220 \div 2$, ants = $220 \div 10$, spiders = ants $\div 2$ or equivalent
	•³ process: find number of beetles	• ³ 77 3 marks
NOTES:	<u> </u>	1
	Correct answer without working 43 [flies + ants + spiders] (no working neces	award 3/3 sary) award 2/3

1.	Correct answer without worki	ng	award 3/3
	143 [flies + ants + spiders]	(no working necessary)	award 2/3
3.	$57 \left[{}^{126}/_{220} \times 100 \right]$	(no working necessary)	award 1/3
4.	$\frac{1}{3}$ of 220 = 73(·3)		award 0/3
٦.	73 01 220 73(3)		awara 0/2

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
7	Ans: 117 cm	
	•¹ strategy: correct form of Pythagoras Theorem	\bullet^1 80 ² + 55 ²
	• ² process: calculate sum of two squares	• 9425 (the only cases where this mark is available for calculating the difference of two squares are shown in notes 2a and 3b)
	• process: calculate square root of sum (or difference) of two squares	•³ 97(·08) (correctly rounded or truncated)
	• strategy/process: add 20 to previously calculated value	•4 117
NOTES:		4 marks

1. Some common answers (no working necessary)

(a) 117 4/4

97 (b)

 $\checkmark\checkmark\checkmark\times$ 3/4

2. Some common answers (working must be shown)

where correct horizontal distance of 80 is used

(a) 78(·...)

 $[\sqrt{(80^2 - 55^2) + 20}]$

3/4 3/4

156(·...) (b) (c) 95(·...)

 $[\sqrt{(80^2 + 110^2)} + 20]$ $[\sqrt{(110^2-80^2)}+20]$

2/4

3. Some common answers (working must be shown) where incorrect horizontal distance of 80+20=100 is used [4th mark is unavailable since 20 has been added inappropriately]

(a)

 $\sqrt{(100^2 + 55^2)}$

114(·...) 84,83(·...) (b)

 $\sqrt{(100^2 - 55^2)}$ $\sqrt{(100^2 + 110^2)}$

2/4 $\times \checkmark \checkmark \times$

149,148(·...) (c)

2/4

46,45(·...) (d)

 $\sqrt{(110^2-100^2)}$

1/4 ××√×

4. Award of first 2 marks if trigonometry is used:

 $\begin{array}{lll} 55 \div \sin(\tan^{-1}(^{55}/_{80})) & or \\ eg & 110 \div \sin(\tan^{-1}(^{110}/_{80})) \end{array} & 80 \div \cos(\tan^{-1}(^{55}/_{80})) \end{array}$

award marks 1 & 2

(b)

award 1 of the first 2 marks

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
8	Ans: 360 grams	
	•¹ strategy: know to calculate volume	\bullet^1 $10 \times 10 \times 3$
	• ² process: calculate volume	• 300
	• strategy: know to use proportion	\bullet ³ $\frac{300}{400} \times 480$ or equivalent
	• strategy: carry out calculations correctly	• ⁴ 360 4 marks

1. Correct answer without working award 4/4

2. Some common answers (no working necessary)

(a) 380 [300 + 80]

award 2/4 \checkmark ××

(b) 300

award 2/4 $\sqrt{\checkmark} \times \times$

3. Some common answers (working must be shown)

(a) $300 \div (480 \div 400) = 250$

award 3/4 \checkmark \checkmark × \checkmark

(b) $300 \times (400 \div 480) = 250$

award $3/4 \checkmark \checkmark \times \checkmark$

[Do not penalise premature rounding eg $400 \div 480 = 0.8 \times 300 = 240$]

4. Alternative strategy

(a) $300 + 300 \div 5 = 360$ (no working necessary) award 4/4

(b) $300 + 300 \div 6 = 350$ (working must be shown) award 3/4 \checkmark \checkmark \checkmark

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
9	Ans: £183.45	
	• interpret/process: find cost of tickets in euros	•1 255
	• strategy: know how to convert cost into sterling	$\bullet^2 255 \div 1.39$
	• process: convert cost into sterling to the nearest penny	•³ 183·45
		3 marks

- 1. (a) Correct answer without working award 3/3
 (b) 354·45 [255 × 1·39] (no working necessary) award 1/3 √××
- 2. Alternative strategy

3. Where working shows that candidate has used alternative strategy award 3/3 for final answers of 183·43, 183·44 or 183·46

Question	Marking Scheme	Illustrations of evidence for awarding
No	Give 1 mark for each •	a mark at each •
10 (a)	Ans: £27·20 •¹ strategy/process: find 1·6% of 1700	•¹ £27·2(0) 1 mark

- 1. $1727 \cdot 2(0) [27 \cdot 2(0) + 1700]$ can only be awarded the mark if the candidate **states** that the interest is $27 \cdot 2(0)$
- 2. Mark not available for invalid working subsequent to correct interest e.g. $27 \cdot 2(0) \div 12 = 2 \cdot 66$ or $2 \cdot 67$ award 0/1

(b)	Ans: £2057				
	•¹ strategy/process:	find 21% of 1700	$ullet^1$	357	
	•² strategy/process:	add interest onto loan	•2	2057	2 marks

- 1. Correct answer without working award 2/2
- 2. 2026.4(0) [$(27.2(0)\times12) + 1700$] award $1/2 \times \checkmark$
- 3. 2nd mark only available for correctly adding a **calculated** value onto 1700

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •		
11	Ans: 438·70			
	•¹ interpret/process: interpret table	•¹ 3 hours @ time and a half and 7 hours @ double time		
	•²•³ strategy/process: find overtime pay	• 2 • 3 151·7(0) [award 1 for time and half = $36\cdot9(0)$ or double time = $49\cdot2(0) + 65\cdot6(0)$ or overtime rates = $12\cdot3(0)$ and $16\cdot4(0)$]		
	• ⁴ strategy/process: find total pay	• ⁴ 438·7(0) 4 marks		

1. Correct answer without working

award 4/4

- 2. Acceptable alternative strategy for calculating overtime: $4.5 \times 8.2(0) + 14 \times 8.2(0)$
- 3. Some common answers
 - (a) $369 \quad [3 \times 8 \cdot 2(0) + 7 \times 8 \cdot 2(0) + 287]$ (working must be shown) award $2/4 \quad \checkmark \times \checkmark$
 - (b) 369 $[10\times8\cdot2(0) + 287 \text{ or } 45\times8\cdot2(0)]$ (working not necessary) award $1/4\times\times\times\checkmark$
 - (c) 369 (with no working)

award 1/4 ×××✓

- 4. Some common answers (working not necessary)
 - (a) 717.5(0) [1.5×287 + 287 or 2.5×287]

award $1/4 \times \times \times \checkmark$

(b) 430.5(0) [1.5×287]

award 0/4

5. A common answer (working must be shown)

$$414 \cdot 1(0) \quad [3 \times 4 \cdot 1(0) + 7 \times 16 \cdot 4(0) + 287]$$

award $3/4 \checkmark \times \checkmark \checkmark$

Question No	Marking Scheme Give 1 mark for each ●			Illustrations of evidence for awarding a mark at each ●		
12	Ans: 141 cm ²					
	•1	strategy:	know how to find curved surface area	•1	2πrh or πdh	
	•2	process:	substitute correct radius (or correct diameter) and height into formula involving π	•2	$2 \times \pi \times 9 \times 2 \cdot 5$ or $\pi \times 18 \times 2 \cdot 5$	
	•3	process:	carry out calculation involving π	•3	141(·37) 3 marks	
NOTES:				l		
1. (Correct answer without working			ä	award 3/3	
2. I	2. Disregard premature or incorrect rounding					

3. Some common answers (working must be shown)

- (a) 282·6, 282·7(...) or 283 $[2\pi rh = 2 \times \pi \times 18 \times 2.5]$ award 2/3 $\checkmark \times \checkmark$ (b) 282·6, 282·7(...) or 283 $2 \times \pi \times 18 \times 2.5$ award 1/3 $\times \times \checkmark$ (c) 113(·...) $\checkmark \times \checkmark$ $[2\pi rh = 2 \times \pi \times 18]$ award 2/3 (d) 15·7(...) or 16 $2 \times \pi \times 2.5$ award 1/3 $\times \times \checkmark$ (e) 70.6(...) or 71 $[\pi rh = \pi \times 9 \times 2.5]$ award 2/3 ×<< $[\pi r^2 = \pi \times 9^2]$ $[\pi r^2 = \pi \times 9^2 = \pi \times 18]$ (f) 254(·...) award 1/3 $\times \times \checkmark$ (g) 56·5(...) or 57 award 0/3 (h) 56·5(...) or 57 $[\pi d = \pi \times 18]$ award 1/3 ××**√**
- 4 650(·...), 649(·...) [total surface area] or 396, 395(·...) [curved surface + area of one circular face] (a) if the candidate **states** that curved surface area is 141(·37...)

(b) otherwise (no working necessary)

award 3/3 award 2/3

Question	Marking Scheme		Illustrations of evidence for awarding			
No	(Give 1 mark for each •	a mark at each •			
13	Ans: 7.5% •¹ strategy:	find weight loss	•¹ 6			
	•² strategy:	know to express loss as a fraction of 80	$\bullet^2 \frac{6}{80}$			
	•³ strategy:	know to multiply fraction by 100	$\bullet^3 \qquad \frac{6}{80} \times 100$			
	• ⁴ process:	carry out all calculations correctly	• ⁴ 7·5			
			4 marks			
NOTES:						
1.	1. Correct answer without working award 4/4					
2.	Some common	answers (working must be shown)				
	(a) 92·5	$[^{74}/_{80} \times 100]$	award 3/4 ×√√√			
	(b) 8(·)	$[^6/_{74} \times 100]$	award 3/4 ✓×✓✓			
	(c) 1333(·)	$[^{80}/_6 \times 100]$	award 3/4 ✓×✓✓			
	(d) 108(·)	$[^{80}/_{74} \times 100]$	award 2/4 ××√√			
	(e) 4·8	$[^6/_{100} \times 80]$	award 2/4 ✓××✓			
	(f) 4·44	$[^6/_{100} \times 74]$	award 2/4 ✓××✓			
	(g) 59·2	$[^{74}/_{100} \times 80 \text{ or } ^{80}/_{100} \times 74]$	award 1/4 ×××✓			

Question	Marking Scheme		Illustrations of evidence for awarding		
No	Give 1 mark for each ●		a mark at each •		
14	Ans: 63 m ²				
	•¹ strategy: know circle	to calculate area of semi-	e^1 ½ πr^2		
	•² strategy: subst	itute correct radius into area ula	$\bullet^2 \frac{1}{2} \times \pi \times 5^2$		
		to add area of triangle to of semi-circle	$\bullet^3 \frac{1}{2} \times \pi \times 5^2 + \frac{1}{2} \times 8 \times 6$		
	• process: carry out all calculations correctly (must include a circle calculation involving either squaring or halving followed by an addition		\bullet^4 63(·2699) or 63(·25) (π) (3·14)		
	or a	subtraction)		4 marks	
NOTES:					
	Correct answer withou	t working	award 0/4		
2 B	seware!!!				
		for adding 8+6+10=24 to area	a of semi-circle		
e	g (i) $\frac{1}{2} \times \pi \times 5^2 + \frac{1}{2}$	$\times 8 \times 6 = 63$	award 4/4		
	(ii) $\frac{1}{2} \times \pi \times 5^2 + 8 + 6 + 10 = 63$		award $3/4 \checkmark \checkmark \times \checkmark$		
	(iii) $\frac{1}{2} \times \pi \times 5^2 + 24 = 63$		award $3/4 \checkmark \checkmark \times \checkmark$		
3 8	ome common answei	rs (working must be shown)			
		$[\frac{1}{2}\pi r^2 + \frac{1}{2} \times 8 \times 6, r=10]$	award $3/4 \checkmark \times \checkmark \checkmark$		
		$[\frac{1}{2}\pi r^2, r=10]$	award $1/4 \checkmark \times \times$		
	c) 102(·), 103	$[\pi r^2 + \frac{1}{2} \times 8 \times 6]$	award $3/4 \times \sqrt{\checkmark}$		
		$[\frac{1}{2}\pi r^2 + 48]$	award $3/4$ \checkmark \checkmark \checkmark		
	e) 79,78(·)	$[\pi r^2]$	award $1/4 \times \checkmark \times$		
	f) 79(·)	$[\pi d + 48, d=10)]$	award $1/4 \times \checkmark \times \times$		
	g) 63(·), 64	$[\frac{1}{2}\pi r^2 + 48, r^2 = 5^2 = 10]$	award $2/4$ \checkmark \checkmark ××		
	a) 63(·), 64	$[\frac{1}{2}\pi d + 48, d=10)]$	award $2/4 \times \checkmark \times \checkmark$		
(i		$[\pi r^2 + \frac{1}{2} \times 8 \times 6, r^2 = 5^2 = 10)]$	award $2/4 \times \checkmark \checkmark \times$		
l (j		$[\pi d + \frac{1}{2} \times 8 \times 6, d=10)]$	award $2/4 \times \checkmark \checkmark \times$		
	s) 39(·), 40	$[\frac{1}{2}\pi r^2 + \frac{1}{2} \times 8 \times 6, r^2 = 5^2 = 10)]$	award $3/4 \checkmark \checkmark \checkmark \times$		
) 39(·), 40	$[\frac{1}{2}\pi d + \frac{1}{2} \times 8 \times 6, d=10)]$	award $3/4 \times \checkmark \checkmark \checkmark$		
	n) 39(·)	$[\frac{1}{2}\pi r^2]$	award $2/4$ \checkmark \checkmark ××		

TOTAL MARKS FOR PAPER 2 50

> TOTAL MARKS FOR PAPER 1 & 2 80

[END OF MARKING INSTRUCTIONS]