| 1. | Evaluate                | $3\cdot 1 + 2\cdot 6 \times 4.$ | KU<br>2 | RE |
|----|-------------------------|---------------------------------|---------|----|
| 2. | Evaluate                | $3\frac{5}{8} + 4\frac{2}{3}$ . | 2       |    |
| 3. | Given that $f(m) = m^2$ | -3m, evaluate $f(-5)$ .         | 2       |    |

4. Solve algebraically the equation

[2500/405]

$$2x - \frac{(3x - 1)}{4} = 4.$$

5. A furniture maker investigates the delivery times, in days, of two local wood companies and obtains the following data.

| Company    | Minimum | Maximum | Lower<br>Quartile | Median | Upper<br>Quartile |
|------------|---------|---------|-------------------|--------|-------------------|
| Timberplan | 16      | 56      | 34                | 38     | 45                |
| Allwoods   | 18      | 53      | 22                | 36     | 49                |

- (a) Draw an appropriate statistical diagram to illustrate these two sets of
- (b) Given that consistency of delivery is the most important factor, which company should the furniture maker use? Give a reason for your answer.

Page three

[Turn over

3

6. A is the point  $(a^2, a)$ .

Age

T is the point  $(t^2, t)$ ,  $a \neq t$ 

Find the gradient of the line AT.

Give your answer in its simplest form.

7. A garage carried out a survey on 600 cars.

The results are shown in the table below.

## Engine size (cc)

KU RE

3

1

2

 0-1000
 1001-1500
 1501-2000
 2001+

 Less than 3 years
 50
 80
 160
 20

 3 years or more
 60
 100
 120
 10

(a) What is the probability that a car, chosen at random, is less than 3 years old?

(b) In a sample of 4200 cars, how many would be expected to have an engine size greater than 2000cc **and** be 3 or more years old?

**8.** The diagram below shows part of the graph of  $y = 4x^2 + 4x - 3$ . The graph cuts the y-axis at A and the x-axis at B and C.



- (a) Write down the coordinates of A.
- (b) Find the coordinates of B and C.
- (c) Calculate the minimum value of  $4x^2 + 4x 3$ .
- 9. A number pattern is shown below.

$$1^3 + 1 = (1 + 1)(1^2 - 1 + 1)$$

$$2^3 + 1 = (2 + 1)(2^2 - 2 + 1)$$

$$3^3 + 1 = (3+1)(3^2 - 3 + 1)$$

- (a) Write down a similar expression for  $7^3 + 1$ .
- (b) Hence write down an expression for  $n^3 + 1$ .
- (c) Hence find an expression for  $8p^3 + 1$ .

| ΚŪ | RE |
|----|----|
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    | 14 |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
| 1  |    |
| 3  |    |
|    | 2  |
|    | 2  |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|    | 1  |
|    |    |

| 10. | Simpl | lifx |
|-----|-------|------|
| 10. | omp   | шу   |

$$\frac{\sqrt{3}}{\sqrt{24}}$$

Express your answer as a fraction with a rational denominator.

11. The intensity of light, I, emerging after passing through a liquid with concentration, c, is given by the equation

$$I = \frac{20}{2^c} \qquad c \ge 0.$$

- (a) Find the intensity of light when the concentration is 3.
- (b) Find the concentration of the liquid when the intensity is 10.
- (c) What is the maximum possible intensity?

[END OF QUESTION PAPER]

3

1

2

KU RE 1. How many chocpops will be eaten in the year 2001? Give your answer in scientific notation. 2 2. The price, in pence per litre, of petrol at 10 city garages is shown below.  $84 \cdot 2$ 84.4 85.1 83.9 81.084.2 85.6 84.9 85.2 84.8 (a) Calculate the mean and standard deviation of these prices. 3 (b) In 10 rural garages, the petrol prices had a mean of 88.8 and a standard deviation of 2.4. How do the rural prices compare with the city prices? 2 3. In 1999, a house was valued at £90000 and the contents were valued at £60000. The value of the house appreciates by 5% each year. The value of the contents depreciates by 8% each year. What will be the total value of the house and the contents in 2002?

3

rm

4. A water pipe runs between two buildings.

These are represented by the points A and B in the diagram below.

KU RE

3



- (a) Using the information in the diagram, show that the equation of the line AB is 3y x = 6.
- (b) An emergency outlet pipe has to be built across the main pipe. The line representing this outlet pipe has equation 4y + 5x = 46.

Calculate the coordinates of the point on the diagram at which the outlet pipe will cut across the main water pipe.

**5.** A cylindrical soft drinks can is 15 centimetres in height and 6.5 centimetres in diameter.

A new cylindrical can holds the same volume but has a reduced height of 12 centimetres.

What is the diameter of the new can?

Give your answer to 1 decimal place.

**6.** Three radio masts, Kangaroo (K), Wallaby (W) and Possum (P) are situated in the Australian outback.

KU RE

4

3



Kangaroo is 250 kilometres due south of Wallaby.

Wallaby is 410 kilometres from Possum.

Possum is on a bearing of 130° from Kangaroo.

Calculate the bearing of Possum from Wallaby.

Do not use a scale drawing.

7. Solve algebraically the equation

$$\tan 40^{\circ} = 2\sin x^{\circ} + 1$$
  $0 \le x < 360$ .





The uniform cross-section is shown below.



Find the volume of metal required to make the door-stop.

## 7. The electrical resistance, R, of copper wire varies directly as its length, L metres, and inversely as the square of its diameter, d millimetres.

Two lengths of copper wire, A and B, have the same resistance.

Wire A has a diameter of 2 millimetres and a length of 3 metres.

Wire B has a diameter of 3 millimetres.

What is the length of wire B?

The metal bar is 21 centimetres long.

It is fixed to the table **top** 14 centimetres from the hinge and to the table **leg** 12 centimetres from the hinge.



- (a) Calculate the size of the obtuse angle which the table top makes with the leg.
- (b) Given that the table leg is 70 centimetres long, calculate the height of the table.

[Turn over for Question 11 on Page eight

KU RE

3

| 11. | A rectangular wall vent is 30 centimetres long and 20 centimetres wide.                          | KU | KE         |  |
|-----|--------------------------------------------------------------------------------------------------|----|------------|--|
|     | It is to be enlarged by increasing <b>both</b> the length and the width by <i>x</i> centimetres. |    |            |  |
|     | (a) Write down the length of the new vent.                                                       |    | 1          |  |
|     | (b) Show that the area, A square centimetres, of the new vent is given by                        |    |            |  |
|     | $A = x^2 + 50x + 600.$                                                                           |    | 2          |  |
|     | (c) The area of the new vent <b>must</b> be <b>at least</b> 40% more than the original area.     |    | 6          |  |
|     | Find the <b>minimum</b> dimensions, to the nearest centimetre, of the new vent.                  |    | 5          |  |
|     |                                                                                                  |    | <b>4</b> ) |  |
|     | [END OF QUESTION PAPER]                                                                          |    |            |  |